Showing posts with label carbon dioxide. Show all posts
Showing posts with label carbon dioxide. Show all posts

Monday 25 May 2015

Sleeping Giant in the Arctic



Huge amounts of carbon are contained in sediments, soils and vegetation in the Arctic. Rising temperatures in the Arctic threaten to cause much of this carbon to be released to the atmosphere.

On May 23, 2015, temperatures in Alaska were as high as 91°F (32.78°C), as illustrated by the image below.

[ image credit: US National Weather Service Alaska ]
High temperatures were reached at the city of Eagle, located on the southern bank of the Yukon River, at an elevation of 853 ft (260 m). High temperatures at such a location will cause meltwater, aggravating the situation well beyond the local area.
A bank of permafrost thaws near the Kolyma
River in Siberia. Credit: University of Georgia

Carbon contained in soils will thus become increasingly exposed under the combined impact of rising temperatures and the associated growing amounts of meltwater. The meltwater can additionally cause erosion further downstream, thus making carbon at many locations become more prone to be consumed by microbes and released into the atmosphere in the form of carbon dioxide and methane.

A recent study found that, at a location where the Kolyma river in Siberia carved into the permafrost and exposed the carbon, microbes converted 60% of the carbon into carbon dioxide in two weeks time.

Gary Houser, who recently launched the movie Sleeping Giant in the Arctic, elaborates on the threat of emissions from thawing permafrost:
This immense release would likely feed on itself, raising temperatures that continue melting more and more permafrost in a vicious, frightening, and unstoppable cycle. A tipping point could well be crossed, at which time human intervention is no longer possible. Temperatures across the planet could soar, setting in motion catastrophic levels of drought and food shortage. All life support systems on earth and life forms themselves could be placed under severe stress.

The colossal scale of the danger - and the observation of those factors lining up that could trigger it - demand that humanity exercise the precautionary principle. All political decision-making related to carbon emissions must be based on the understanding that a catastrophic consequence is looming, and the window of time for prevention quickly diminishing.
SLEEPING GIANT IN THE ARCTIC:
Can Thawing Permafrost Cause Runaway Global Heating?
by Gary Houser



Sources: 

US National Weather Service Alaska

University of Georgia

Sleeping Giant in the Arctic


Sleeping Giant in the Arctic http://arctic-news.blogspot.com/2015/05/sleeping-giant-in-the-arctic.html

Posted by Sam Carana on Monday, May 25, 2015

Friday 8 May 2015

Monthly CO2 Levels Above 400ppm



For the first time since modern records began, monthly mean carbon dioxide levels were above 400 parts per million (ppm), as illustrated by the NOAA image below. NOAA just released the mean global carbon dioxide level for March 2015, which was 400.83 ppm.
Arctic Ocean hit hard

Carbon dioxide concentrations can be especially high, i.e. well over 410 ppm, at higher latitudes of the Northern Hemisphere, as illustrated by the NOAA image below. This can contribute to very high temperature anomalies over the Arctic Ocean and thus increase the risk of huge amounts of methane erupting from the Arctic Ocean seafloor. 
Image contributed by Harold Hensel
Since the start of the Industrial Revolution, carbon dioxide levels have risen non-linearly, as illustrated by the image below.

Need for Comprehensive and Effective Action

As many posts at this blog have warned, emissions by people and the numerous feedbacks are threatening to push Earth into runaway global warming.

This calls for comprehensive and effective action to - among other things - reduce atmospheric carbon dioxide levels back to 280 ppm, as illustrated by the image below and as further discussed at the policies proposed as part of the Climate Plan.


How best to get back to 280 ppm? 

The Climate Plan calls for restoration of greenhouse gas levels in oceans and atmosphere to their long term average by 2100. In the Climate Plan, multiple lines of action are proposed to work simultaneously, in parallel and separately in their implementation, yet complementary in their impact.


One line of action is to cut emissions by 80% by the year 2020. To achieve this, the Climate Plan advocates implementation of local feebates. Especially important are fees on sales of fuel, while the resulting revenues are best used to fund rebates on products sold locally that further help speed up the shift to clean energy.

Without further action, much of the carbon dioxide that has been emitted will stay in the atmosphere for hundreds, if not thousands of years. Therefore, further lines of action are needed, including removal of carbon dioxide from the atmosphere and oceans, with the carbon being safely stored.

For the long term average of 280 ppm to be achieved in 2100, large amounts of atmospheric carbon dioxide must also be removed and safely stored annually. How much must be removed? The period from 2015 to 2100 has 85 years, so bringing down carbon dioxide from 400 ppm to 280 ppm over that period works out to an annual removal of 1.41 ppm. By comparison, this is slightly less than the annual growth in carbon dioxide levels as caused by people since 1959, which is on average 1.47 ppm. Assuming that emissions will not be cut quickly enough to avoid further build up of carbon dioxide in the atmosphere in the near future, annual removal will need to be somewhat more, so 1.47 ppm looks like a good target for now, precisely because it equals past emissions.


The Climate Plan thus proposes that each nation will contribute to the necessary annual 1.47 ppm removal with a share that reflects its past emissions. The image below gives an idea of past emissions. Note that the image only shows emissions up to the year 2011 and that they exclude land use change and forestry emissions. Furthermore, the image shows emissions based on where products were produced. Much of the rise in emissions is the result of products that were produced in Asia, yet many of these products were consumed in Europe and North America. Therefore, graphs based on emissions where products were consumed would paint a somewhat different picture. The Climate Plan proposes that a nation's contributions to carbon dioxide removal (from oceans and atmosphere) will reflect its past emissions based on where products were consumed.


The Climate Plan advocates separate lines of action, i.e. greenhouse gas removal next to emission cuts and further action. Keeping action on different types of pollution separate and calling for local action in each nation further helps avoid that progress elsewhere is pointed at by a nation as an excuse to delay the necessary action on a specific type of pollution in that nation.

As said, the Climate Plan therefore calls for fees to be added on sales of polluting products where they are consumed (as opposed to where they are produced). Each nation is further expected to take steps to contribute its share to the 1.47 ppm carbon dioxide that needs to be removed from the atmosphere annually. Additionally, carbon dioxide needs to be removed from the oceans.

The most important thing each nation can do in the lead-up to the upcoming U.N. climate conference in Paris is to accept these commitments. How each nation and local community does achieve targets is best decided locally, provided that each nation and each local community does indeed reach its targets, and this follows from this commitment.

One reason why local feebates are recommended is that they can focus on achieving local targets for a specific pollutant. Local feebates allow communities to quickly adjust the height of the fees, where a local community threatens to fail reaching a target. Such a local focus does not preclude action being beneficial elsewhere as well. Indeed, the same feebate can work for multiple pollutants and on multiple lines of action. In this sense, locally implemented feebates often work complementary. As an example, the feebates pictured below will help remove carbon dioxide from the atmosphere and oceans, while they will also help cut emissions of carbon dioxide, methane, soot and nitrous oxide.




Further background

- Climate Plan
http://arctic-news.blogspot.com/p/plan.html

- Feebates
http://feebates.blogspot.com/p/feebates.html

- Policies
http://arctic-news.blogspot.com/p/policies.html

- Action
http://arctic-news.blogspot.com/p/action.html



The Climate Plan calls for: - 80% emission cuts by 2020, for each type of pollutant, in each location and best managed...
Posted by Sam Carana on Saturday, May 9, 2015

Sunday 26 October 2014

Ocean Temperature Rise

Ocean Temperatures

Of all excess heat resulting from people's emissions, 93.4% goes into oceans. Accordingly, the temperature of oceans has risen substantially.

Globally, the average September ocean temperature marked a record high for that month in 2014, at 0.66°C (1.19°F) above the 20th century average, breaking the previous record that was set just one month earlier. On the Northern Hemisphere, the temperature of the ocean in September 2014 was 0.83 °C (or 1.49 °F) above the 20th century, 


The anomaly was 0.84 °C in August 2014, as illustrated by the image below.

On specific days, anomalies were much higher. On August 19, 2014, the Northern Hemisphere showed a sea surface temperature anomaly of 1.78 °C, while the North Atlantic sea surface temperature was 1.82 °C above average (CFSR 1979-2000 Baseline) on October 16, 2014, as illustrated by the image below.



Sea surface temperature anomalies are at the top end of the scale in many places in the Arctic, as well as off the coast of North America. The danger is that the Gulf Stream will keep carrying ever warmer water from the North Atlantic into the Arctic Ocean, threatening to unleash huge methane eruptions from the Arctic Ocean's seafloor, in turn causing even higher temperatures and more extreme weather events, wildfires, etc.


Above image shows methane levels as high as 2666 ppb, as measured by the MetOp-2 Satellite at 14,385 ft (~4.4 km) altitude on October 26, 2014 am.

Is 2666 ppb as high as it will get?

Sadly, methane releases from the seafloor of the Arctic Ocean are becoming increasingly larger around this time of year and they look set to get even larger than this. Note that the amount of methane actually erupting from the seafloor of the Arctic Ocean is even larger than what is visible on above image, for the following three reasons.

  1. No data were available for some areas, as the IASI (Infrared Atmospheric Sounding Interferometer) instrument measuring methane only covers a certain width. The white shapes showing up on above images are areas where no measurements were taken, resulting from the way the polar-orbiting satellite circum-navigates the globe, as pictured on the image on the right.

    Furthermore, quality control failed in the grey areas on above images, indicating reading difficulties due to high moisture levels (i.e. snow, rain or water vapor), as also discussed in an earlier post. Accordingly, high methane levels (above 1950 ppb) as show up in the yellow areas could also be present in the many grey areas over the Arctic Ocean.

    When also looking at methane levels on days following the high 2666 ppb reading, methane is persistently present over most of the Arctic Ocean, as illustrated by the above October 29, 2014, combination image, confirming that high methane levels were likely present in areas where no data were available on October 6, 2014.
       
  2. Much of the methane that is released from the Arctic Ocean's seafloor is broken down by microbes as it rises up in the water. The SWERUS-3 research team recently found methane in the waters of the East Siberian Sea at levels that equate to atmospheric levels of  3188 ppb.
       
  3. Much methane is broken down in the atmosphere by hydroxyl, as illustrated by the image below, showing carbon dioxde levels on October 27, 2014, that indicate that large amounts of methane are broken down at higher latitudes on the Northern Hemisphere.

The latter point could explain the sudden recent rise in carbon dioxide levels, as also detected at Mauna Loa, Hawaii, as illustrated by the image below.


In conclusion, the amount of methane that is erupting from the seafloor of the Arctic Ocean is larger than what is visible on satellite images, and the water will be highly saturated with methane at locations where the methane is escaping from the seafloor, highlighting the danger that, in case of large abrupt releases from the Arctic Ocean's seafloor, microbes and hydroxyl will quickly get depleted locally, resulting in little of the methane being broken down, as discussed at an earlier post.

Why are such huge amounts of methane starting to get released from the Arctic Ocean's seafloor now?  

As the image below shows, temperature at 2 meters was below 0°C (32°F, i.e. the temperature at which water freezes) over most of the Arctic Ocean on October 26, 2014. The Arctic was over 6°F (3.34°C) warmer than average, and at places was up to 20°C (36°F) warmer than average.


Above image illustrates the enormous amount of heat that has until now been transferred from the waters of the Arctic Ocean to the atmosphere. Underneath the surface, water temperatures are much higher than they used to be and, as around this time of year the Arctic Ocean freezes over, less heat will from now on be able to escape to the atmosphere. Sealed off from the atmosphere by sea ice, greater mixing of heat in the water will occur down to the seafloor of the Arctic Ocean.

As land around the Arctic Ocean freezes over, less fresh water will flow from rivers into the Arctic Ocean. As a result, the salt content of the Arctic Ocean increases, making it easier for ice in cracks and passages in sediments at the seafloor of the Arctic Ocean to melt, allowing methane contained in the sediment to escape. Furthermore, the sea ice makes that less moisture evaporates from the water, which together with the change of seasons results in lower hydroxyl levels at the higher latitudes of the Northern Hemisphere, in turn resulting in less methane being broken down in the atmosphere over the Arctic.

This situation will continue for months to come. Salty and warm water (i.e. warmer than water that is present in the Arctic Ocean) will continue to be carried by the Gulf Stream into the Arctic Ocean, while less heat and moisture will be able to be transferred to the atmosphere.

In conclusion, high methane levels threaten to further accelerate warming in the Arctic, in a vicious cycle escalating into runaway warming and resulting in death, destruction and extinction at massive scale.

So, what can be done to reduce the risk?

Climate Plan

- Emission Cuts

It is imperative that large emissions cuts are made quickly. The Climate Plan calls for 80% emission cuts by 2020, as one of multiple lines of action that need to be implemented in parallel.

- Greenhouse Gas Removal and Storage

The IPCC points at the need for carbon dioxide removal and also warns about ocean warming continuing for centuries (text below).


Indeed, even if all emissions by people could somehow be brought to an abrupt end, this alone will not stop the rise of ocean temperatures, at least not for a long time. For starters, air temperatures would start rising within days, in response to the disappearance of aerosols that now mask the full wrath of global warming. Furthermore, such a temperature rise would further accelerate feedbacks such as snow and ice decline, methane hydrate destabilization, etc., in turn feeding further temperature rises.

The Climate Plan therefore calls for carbon dioxide removal, as well as for active removal of other greenhouse gases from the atmosphere, and for further lines of action.

- Further Action

Again, merely implementing the above lines of action will not suffice to quickly bring down ocean temperatures. Paleo-climate records show that falls in temperature go hand in hand with falls of carbon dioxide in the atmosphere to levels under 280 ppm, as opposed to current carbon dioxide levels that are around 400 ppm.


Raising Funding for Further Action

The Climate Plan calls for comprehensive and effective action that includes additional lines of action. Such additional action will require U.N. supervision, which may make it hard for the necessary action to obtain sufficient funding.

In earlier posts, it was suggested that, besides having fees imposed on facilities that burn fossil fuel and on sales of fossil fuel itself, additional fees could be imposed on commercial international flights. As long as it seems too hard to substantially reduce emissions associated with such flights, it seems appropriate to explore further ways to minimize such flights, e.g. by imposing additional fees that could help fund further action.

There are a number of ways such fees could be implemented. Such fees could be calculated based on the distance traveled or as a percentage of the fare.

Fees could also be calculated on the basis of the traveler's flying history, e.g. in the form of frequent flyer fees. Such fees could be collected either by the respective airline or airport.

In the box on the right, Ekta Kalra gives further details about how the latter idea could be implemented.

What do you think?


References and related posts

- Four Hiroshima bombs a second: how we imagine climate change
http://arctic-news.blogspot.com/2013/08/four-hiroshima-bombs-second-how-we-imagine-climate-change.html

- Arctic Methane Release and Rapid Temperature Rise are interlinked
http://arctic-news.blogspot.com/2013/11/arctic-methane-release-and-rapid-temperature-rise-are-interlinked.html

- Climate Change Accelerating
http://arctic-news.blogspot.com/2014/10/climate-change-accelerating.html

- NOAA, Global Analysis - September 2014
http://www.ncdc.noaa.gov/sotc/global/2014/9

- NOAA Ocean temperature anomalies
http://www.ncdc.noaa.gov/cag/time-series

- Methane Hydrates
http://methane-hydrates.blogspot.com/2013/04/methane-hydrates.html

- Climate Plan
http://climateplan.blogspot.com




Friday 4 July 2014

Climate Plan

This image sums up the lines of action, to be implemented in parallel and as soon as possible, and targets of the Climate Plan, in order to avoid climate catastrophe.

The Climate Plan and its various parts have been discussed in many post at Arctic-news blog over the years.

Now is the time to support the Climate Plan and to make sure that it will be considered at many forums, such as the Climate Summit, to be held September 23, 2014, at the U.N. Headquarters in New York, and preparations for the UNFCCC Climate Change Conference in Paris in 2015.

Please show your support by sharing this text and the image widely!


Emission cuts

In nations with both federal and state governments such as the U.S., the President (or Head of State or Cabinet, basically where executive powers are held) can direct:
  • federal departments and agencies to reduce their emissions for each type of pollutant annually by a set percentage, say, CO2 and CH4 by 10%, and HFCs, N2O and soot by higher percentages.
  • the federal Environmental Protection Agency (EPA) to make states each achieve those same reductions. 
  • Target: 80% cut everywhere for each type of pollutant
    by 2020 (to be managed locally provided targets are met)
  • the EPA to monitor progress by states and to step in with more effective action in case a state looks set to miss one or more targets.
    (More effective action in such a case would be to impose (federal) fees on applicable polluting products sold in the respective state, with revenues used for federal benefits. Such federal benefits could include building interstate High-Speed Rail tracks, adaptation and conservation measures, management of national parks, R&D into batteries, ways to vegetate deserts and other land use measurements, all at the discretion of the EPA. Fees can be roughly calculated as the average of fees that other states impose in successful efforts to meet their targets.)
Similar policies could be adopted elsewhere in the world, and each nation could similarly delegate responsibilities to states, provinces and further down to local communities.

Carbon dioxide removal and storage
Target: restore atmosphere and ocean to long term average
by 2100 (with each nation's annual contributions to reflect
its past emissions)

Energy feebates can best clean up energy, while other feebates (such as pictured in the above diagram) can best raise revenue for carbon dioxide removal. Energy feebates can phase themselves out, completing the necessary shift to clean energy within a decade. Carbon dioxide removal will need to continue for much longer, so funding will need to be raised from other sources, such as sales of livestock products, nitrogen fertilizers and Portland cement.

A range of methods to remove carbon dioxide would be eligible for funding under such feebates. To be eligible for rebates, methods merely need to be safe and remove carbon dioxide.

There are methods to remove carbon dioxide from the atmosphere and/or from the oceans. Rebates favor methods that also have commercial viability. In case of enhanced weathering, this will favor production of building materials, road pavement, etc. Such methods could include water desalination and pumping of water into deserts, in efforts to achieve more vegetation growth. Selling a forest where once was a desert could similarly attract rebates.

Some methods will be immediately viable, such as afforestation and biochar. It may take some time for methods such as enhanced weathering to become economically viable, but when they do, they can take over where afforestation has exhausted its potential to get carbon dioxide back to 280ppm.

Additionally, conservation and land use measures could help increase carbon storage in ecosystems.

Solar radiation management

Target: prevent Arctic Ocean from warming by more
than 1°C above long term average (U.N. supervised)
Apart from action to move to a more sustainable economy, additional lines of action are necessary to reduce the danger of runaway global warming.

Extra fees on international commercial aviation could provide funding for ways to avoid that the temperature of the atmosphere or the oceans will rise by more than 1°C above long term average.

Due to their potential impact across borders, these additional lines of action will need ongoing research, international agreement and cooperation.

Land, clouds, wind, water, snow and ice management

Target: increase Arctic snow and ice cover (U.N.
supervised) and restore it to its long term average 
Apart from action to move to a more sustainable economy, additional lines of action are necessary to reduce the danger of runaway global warming.

Extra fees on international commercial aviation could also provide funding for ways to cool the Arctic and restore the snow and ice cover to its long term average extent.

As said, due to their potential impact across borders, these additional lines of action will need ongoing research, international agreement and cooperation.

Methane management and further action

Target: relocate vulnerable Arctic clathrates (U.N. supervised)
and restore mean atmospheric CH4 level to long term average
by 2100 (with each nation's annual contributions to reflect its
past emissions.
Further action is needed to avoid that huge quantities of methane will abruptly erupt from the seafloor of the Arctic Ocean.

Vulnerable hydrates should be considered to be relocated under U.N. supervision.

Besides this, local action can be taken to reduce methane levels in the atmosphere with each nation's annual contributions to reflect its past emissions.

Adaptation, conservation and land use measures could further improve the situation.

The comprehensive and effective action of the Climate Plan will reduce the threat of runaway warming, and this will have obvious benefits for the environment and for species threatened with extiction.

Besides this, this will also save people money, will improve people's health and safety, will increase security of food and fresh water supply, will make energy supply and the electric grid more efficient, safe, robust and reliable, will reduce perceived needs for military forces to police fuel supply lines globally, and will create numerous local job and investment opportunities.


Please support, follow and discuss the Climate Plan at facebook.com/ClimatePlan and at ClimatePlan.blogspot.com