Showing posts with label albedo. Show all posts
Showing posts with label albedo. Show all posts

Friday, 4 December 2015

Ocean Heat Depth

Ocean heat at the equator

On November 24, 2015, equatorial waters at ≈100 m (328 ft) depth at 110-135°W were over 6°C (10.8°F) warmer than average in 1981-2000, as illustrated by above image. The animation below shows equatorial ocean heat over the past few months, illustrating that temperature anomalies greater than 6°C (10.8°F) occurred throughout this period at depths greater than 100 m (328 ft).

The danger of ocean heat destablizing clathrates in the Arctic

The danger is that ever warmer water will reach the seafloor of the Arctic Ocean and destabilize methane that is held there in sediments the form of free gas and hydrates.

So, how comparable is the situation at the equator with the situation in the Arctic? How much heating of the Arctic Ocean has taken place over the past few years?

The image on the right, produced with NOAA data, shows mean coastal sea surface temperatures of over 10°C (50°F) in some areas in the Arctic on August 22, 2007.

In shallow waters, heat can more easily reach the bottom of the sea. In 2007, strong polynya activity caused more summertime open water in the Laptev Sea, in turn causing more vertical mixing of the water column during storms in late 2007, according to this study, and bottom water temperatures on the mid-shelf increased by more than 3°C (5.4°F) compared to the long-term mean.

This study finds that drastic sea ice shrinkage causes increase in storm activities and deepening of the wind-wave-mixing layer down to depth ~50 m (164 ft) that enhance methane release from the water column to the atmosphere. Indeed, the danger is that heat will warm up sediments under the sea, containing methane in hydrates and as free gas, causing large amounts of this methane to escape rather abruptly into the atmosphere.

The image below, replotted by Leonid Yurganov from a study by Chepurin et al, shows sea water temperature at different depths in the Barents Sea, as described in an earlier post.

The image below is from a study published in Nature on November 24, 2013, showing water temperatures measurements taken in the Laptev Sea from 1999-2012.

Water temperatures in Laptev Sea. Red triangles: summer. Blue triangles: winter. Green squares: historic data.
From Shakhova et al., (2013) doi:10.1038/ngeo2007
Before drawing conclusions, let's examine some peculiarities of the Arctic Ocean more closely, specifically some special conditions in the Arctic that could lead to greater warming than elsewhere and feedbacks that could accelerate warming even more.

Amount of methane ready for release

Sediments underneath the Arctic Ocean hold vast amounts of methane. Just one part of the Arctic Ocean alone, the East Siberian Arctic Shelf (ESAS, rectangle on map below, from the methane page), holds up to 1700 Gt of methane. A sudden release of just 3% of this amount could add over 50 Gt of methane to the atmosphere, and experts consider such an amount to be ready for release at any time (see above image).

Total methane burden in the atmosphere now is 5 Gt. The 3 Gt that has been added since the 1750s accounts for almost half of the (net) total global warming caused by people. The amount of carbon stored in hydrates globally was in 1992 estimated to be 10,000 Gt (USGS), while a more recent estimate gives a figure of 63,400 Gt (Klauda & Sandler, 2005). The ESAS alone holds up to 1700 Gt of methane in the form of methane hydrates and free gas contained in sediments, of which 50 Gt is ready for abrupt release at any time.

Imagine what kind of devastation an extra 50 Gt of methane could cause. Imagine the warming that will take place if the methane in the atmosphere was suddenly multiplied by 11.

Whiteman et al. recently calculated that such an event would cause $60 trillion in damage. By comparison, the size of the world economy in 2012 was about $70 trillion.

Shallow waters in the Arctic Ocean
Shallow waters and little hydroxyl

The danger is particularly high in the shallow seas that are so prominent in the Arctic Ocean, as illustrated by the light blue areas on the image on the right, from an earlier post.

Much of the waters in the Arctic Ocean are less than 50 m deep. Being shallow makes waters prone to warm up quickly during summer temperature peaks, allowing heat to penetrate the seabed.

This can destabilize hydrates and methane rising through shallow waters will then also enter the atmosphere more quickly, as it rises abruptly and in plumes.

Elsewhere in the world, releases from hydrates underneath the seafloor will largely be oxidized by methanotroph bacteria in the water and where methane does enter the atmosphere, it will quickly be oxidized by hydroxyl. In shallow waters, however, methane released from the seabed will quickly pass through the water column.

Large abrupt releases will also quickly deplete the oxygen in the water, making it harder for bacteria to break down the methane.

Very little hydroxyl is present in the atmosphere over the poles, as illustrated by the image on the right, showing global hydroxyl levels, from an earlier post.

In case of a large abrupt methane release from the Arctic Ocean, the little hydroxyl that is present in the atmosphere over the Arctic will therefore be quickly depleted, and the methane will hang around for much longer locally than elsewhere on Earth.

Shallow waters make the Arctic Ocean more prone to methane releases, while low hydroxyl levels make that methane that enters the atmosphere in the Arctic will contribute significantly to local warming and threaten to trigger further methane releases.

High levels of insolation in summer in the Arctic

Furthermore, the amount of solar radiation received by the Arctic at the June Solstice is higher than anywhere else on Earth, as illustrated by the image below, showing insolation on the Northern Hemisphere by month and latitude, in Watt per square meter, from an earlier post.

Warm water enters Arctic Ocean from Atlantic and Pacific Oceans

What further makes the situation in the Arctic particularly dangerous is that waters are not merely warmed up from the top down by sunlight that is especially strong over the Arctic Ocean in summer on the Northern Hemisphere, but also by warm water that flows into the Arctic Ocean from rivers and by warm water that enters the Arctic Ocean through the Bering Strait and through the North Atlantic Ocean. The latter danger is illustrated by the image below, from an earlier post.


Furthermore, there are feedbacks that can rapidly accelerate warming in the Arctic, such as albedo losses due to loss of sea ice and snow cover on land, and changes to the jet stream resulting in more extreme weather. These feedbacks, described in more details at this page, are depicted in the image below.


Above image shows that methane levels on December 3, 2015, were as high as 2445 parts per billion (ppb) at 469 millibars, which corresponds to an altitude of 19,810 feet or 6,041 m.

The solid magenta-colored areas (levels over 1950 ppb) that show up over a large part of the Arctic Ocean indicate very strong methane releases.

Note there are many grey areas on above image. These are areas where no measurements could be taken, which is likely due to the strength of winds, rain, clouds and the jet stream, as also illustrated by the more recent (December 5, 2015) images on the right.

The polar jet stream on the Northern Hemisphere shows great strength, with speeds as high as 243 mph or 391 km/h (over a location over japan marked by green circle) on December 5, 2015.

So, high methane levels may well have been present in these grey areas, but didn't show up due to the weather conditions of the moment.

Furthermore, the white geometric areas are due the way the satellite takes measurements, resulting in areas that are not covered.

Finally, it should be noted that much of the methane will have been broken down in the water, before entering the atmosphere, so what shows up in the atmosphere over the Arctic is only part of the total amount of methane that is released from the seafloor.

In conclusion, the high methane levels showing up over the Arctic indicate strong methane releases from the seafloor due to warm waters destabilizing sediments that contain huge amounts of methane in the form of free gas and hydrates.

Climate Plan

As global warming continues, the risk increases that greater ocean heat will reach the Arctic Ocean and will cause methane to be released in large quantities from the Arctic Ocean seafloor. The 2015 El Niño has shown that a huge amounts of ocean heat can accumulate at a depth greater than 100 m (328 ft). Conditions in the Arctic and feedbacks make that methane threatens to be released there abruptly and in large quantities as warming continues.

The situation is dire and calls for comprehensive and effective action as described at the Climate Plan

On November 24, 2015, equatorial waters at ≈100 m (328 ft) depth at 110-135°W were over 6°C (10.8°F) warmer than average...
Posted by Sam Carana on Friday, December 4, 2015

Saturday, 10 October 2015

Arctic Sea Ice 2015 - update 11

Arctic sea ice extent has been growing rapidly recently. The image below shows extent up to October 9, 2015 (marked by red dot).

Below is a comparison of sea ice thickness as on October 6, for the years (from left to right) 2012, 2013, 2014 and 2015. The comparison shows that decline has been strongest where sea ice used to be the thickest, i.e. over 3 meters thick.

One of the reasons why the thickest Arctic sea ice has declined so dramatically over the years is the rising ocean heat that is melting the sea ice from underneath. The image below illustrates the situation on October 5, 2015, when sea surface temperature anomalies were as high as 6.4°C, 7.4°C and 7.3°C (11.5°F 13.2°F and 13.1°F) off the North American coast, and as high as 9.4°C (16.8°F) near Svalbard.

Water temperatures are very high in the Arctic, as further illustrated by the image below showing Arctic sea surface temperature anomalies as at October 9, 2015.

Rising ocean heat is further illustrated by the graph below, showing August sea surface temperature anomalies on the Northern Hemisphere over the years.
The situation is very dangerous, due to feedbacks and their interaction. The thicker sea ice used to act as a buffer, consuming ocean heat in the melting process. Without thicker sea ice, ocean heat threatens to melt the sea ice from below right up to the surface, causing the entire sea ice to collapse. As the sea ice declines, more open water will give rise to stronger winds and waves.

Furthermore, sunlight that was previously reflected back into space will instead be absorbed by the water, causing rapid rise of the temperature of the water. In places such as the East Siberian Arctic Shelf, the water is on a average only 50 m deep, so warmer water is able to reach the seafloor more easily there. As ocean heat keeps rising, there's a growing risk that heat will reach the Arctic Ocean seafloor and destabilize methane hydrates in sediments at the Arctic Ocean seafloor.

The image below shows a non-linear trend that is contained in the temperature data that NASA has gathered over the years, as described in an earlier post. A polynomial trendline points at global temperature anomalies of over 4°C by 2060. Even worse, a polynomial trend for the Arctic shows temperature anomalies of over 4°C by 2020, 6°C by 2030 and 15°C by 2050, threatening to cause major feedbacks to kick in, including albedo changes and methane releases that will trigger runaway global warming that looks set to eventually catch up with accelerated warming in the Arctic and result in global temperature anomalies of 16°C by 2052.

[ click on image to enlarge ]
The situation is dire and calls for comprehensive and effective action, as discussed at the Climate Plan.

Comparison of sea ice thickness on October 6, for the years (from left to right) 2012, 2013, 2014 and 2015, shows that...

Posted by Sam Carana on Saturday, October 10, 2015

Thursday, 10 September 2015

3.27°C warmer by 2030?

Will it be 3.27°C warmer by the year 2030?
In December 2015, world delegates will descend on Paris to ensure that global warming will not cross the guardrail of 2°C above pre-industrial levels.

[ click on images to enlarge them ]
In a way, we have already crossed this guardrail. NOAA data show that the year-to-date land surface temperature was 1.47°C above the 20th century average on the Northern Hemisphere in 2015, as illustrated by the image on the right.

Granted, there was less warming on the Southern Hemisphere, so the globally-averaged land surface temperature was a little bit lower, i.e. 1.34°C above the 20th century average. For reference, the image below on the right gives an overview of mean 1901-2000 temperatures. Anyway, the difference between hemispheres is small and not very relevant since most people live on the Northern Hemisphere.

[ click on image to enlarge ]
More importantly, this 1.47°C rise is a rise compared to the 20th century average. The 20th century average was some 0.60°C higher than temperatures were at the start of the NOAA record in 1880. In other words, temperatures for most people on Earth are already 2.07°C higher than they were in 1880.

Furthermore, between 1750 and 1880 the global average temperature had already increased by some 0.20°C.

Sure, 2015 is an El Niño year, but this El Niño is still strengthening, so 2016 could well be even warmer. Moreover, recent temperatures are in line with expectations of a polynomial trendline that is based on these NOAA data and that points at yet another degree Celsius rise by 2030, on top of the current level, as illustrated by the top image. Altogether, this would make it 3.27°C warmer than in 1750 for most people on Earth by the year 2030.

So, instead of acting as if dangerous global warming could possibly eventuate beyond the year 2100, delegates in Paris should commit to lowering temperatures, starting now.

To lower temperatures, cutting emissions alone will not be enough.

Stopping all emissions by people would make that the aerosols that are currently sent up in the air by burning fuel and that are currently masking the full impact of global warming, will fall out of the air in a matter of weeks. Until now, about half of the global temperature rise is suppressed by such aerosols. Stopping aerosols release overnight could make temperatures rise abruptly by 1.20°C in a matter of weeks.

Furthermore, carbon dioxide that is emitted now will take ten years to reach its peak impact, so we're still awaiting the full wrath of carbon dioxide emitted over the past decade.

A recent study calculates that global mean surface temperature may increase by 0.50°C after carbon emissions are stopped, and they will decrease only minimally from that level for the next 10,000 years.

Removing carbon dioxide from the atmosphere would not work fast enough to avoid further warming and acidification of the oceans. In fact, temperatures look set to rise even faster as feedbacks start to kick in more fully, such as albedo changes due to decline of the snow and ice cover in the Arctic and methane releases from the Arctic Ocean seafloor. Furthermore, water vapor will increase by 7% for every 1°C warming. Water vapor is one of the strongest greenhouse gases, so increasing water vapor will further contribute to a non-linear temperature rise.

In conclusion, the world needs to commit to comprehensive and effective action that includes both emission cuts and removal of greenhouse gases from the atmosphere and oceans, as well as further action to deal with the dire situation in the Arctic, as discussed at the Arctic-news Blog.

In December 2015, world delegates will descend on Paris to ensure that global warming will not cross the guardrail of 2°...
Posted by Sam Carana on Thursday, September 10, 2015

Friday, 10 July 2015

Arctic Sea Ice Collapse Threatens

The image below compares the Arctic sea ice thickness on July 14, 2012 (left panel) and on July 14, 2015 (right panel), using Naval Research Laboratory images.

The Naval Research Laboratory's 30-day animation below shows how this situation developed, ending with a forecast for July 17, 2015, run on July 9, 2015.

The dramatic decline of the sea ice, especially north of North America, is the result of a combination of factors, including:

  • very high levels of greenhouse gases over the Arctic Ocean
  • very high levels of ocean heat 
  • heatwaves over North America and Siberia extending high air temperatures over the Arctic Ocean
  • wildfires triggered by these heatwaves resulting in darkening compounds settling on snow and ice
  • very warm river water running into the Arctic Ocean, as illustrated by the image below.  

With still two months of melting to go before the sea ice can be expected to reach its minimum for 2015, the threat of sea ice collapse is ominous. The Arctic-News Blog has been warning for years about the growing chance of a collapse of the sea ice, in which case huge amounts of sunlight that previously were reflected back into space, as well as heat that previously went into melting the ice, will then instead have to be absorbed by the water, resulting in a dramatic rise of sea surface temperatures.

The image below shows the already very high sea surface temperature anomalies as at July 10, 2015.

More open water will then come with an increased chance of storms that can cause high sea surface temperatures to be mixed down all the way to seafloor of the Arctic Ocean, which in many cases is less than 50 m (164 ft) deep.

Meanwhile, ocean heat is accumulating off the coast of North America, as illustrated by the image below showing sea surface temperature as high as 31.8°C (89.24°F) on July 8-9, 2015.

Massive amounts of ocean heat will be carried by the Gulf Stream into the Arctic Ocean over the next few months. The combined result of high sea surface temperatures being mixed down to the seafloor and the ocean heat entering the Arctic Ocean from the Atlantic and Pacific Oceans can be expected to result in dramatic methane eruptions from the Arctic Ocean seafloor by October 2015.

Currently, methane levels are high, especially north of Greenland, as illustrated by the image below showing that on July 10, 2015 (am), levels as high as 2416 parts per billion were recorded at 6,041 m (19,820 ft) altitude, while mean methane levels also reached 1831 parts per billion at this altitude.

The situation is dire and calls for comprehensive and effective action, as discussed at the Climate Plan.

ARCTIC SEA ICE COLLAPSE THREATENSThis image compares the Arctic sea ice thickness on July 14, 2012 (left panel) and on...
Posted by Sam Carana on Friday, July 10, 2015

Friday, 5 June 2015

High Temperatures in the Arctic

The images below illustrate extremely high temperatures forecast to hit Russia on June 6, 2015, as also discussed in the previous post.

A temperature of 29.4°C (84.92°F) is forecast for the location at the green circle for June 6, 2015. The location is close to the Arctic Ocean and to rivers ending in the Arctic Ocean, as also shown on the image below.

The location, at a latitude of 66.48°N, is approximately on the Arctic Circle, which runs 66°33′45.8″ north of the Equator. North of the Arctic Circle, the sun is above the horizon for 24 continuous hours at least once a year.

The many hours of sunshine make that, during the months June and July, insolation in the Arctic is higher than anywhere else on Earth, as shown on above image, by Pidwirny (2006).
Insolation, with contour labels (green) in units of W m−2

The size of the June snow and ice cover is so vitally important as insolation in the Arctic is at its highest at the June Solstice.

The Wikipedia image on the right calculates the theoretical daily-average insolation at the top of the atmosphere, where θ is the polar angle of the Earth's orbit, and θ = 0 at the vernal equinox, and θ = 90° at the summer solstice; φ is the latitude of the Earth.

The calculation assumed conditions appropriate for 2000 A.D.: a solar constant of S0 = 1367 W m−2, obliquity of ε = 23.4398°, longitude of perihelion of ϖ = 282.895°, eccentricity e = 0.016704.

Snow and ice cover on land can take up a large area, even larger than sea ice. In May 2015, the area of snow extent on the Northern Hemisphere was 17 million square km, while sea ice extent in May 2015 was below 13.5 million square km. 

Northern Hemisphere snow, May 2015. Credit: Rutgers University Global Snow Lab
The chart below shows the decline of snow cover on land on the Northern Hemisphere in Spring over the years. 

Credit: Rutgers University Global Snow Lab
High temperatures over the Arctic Ocean are heating up the snow cover on land and the sea ice from above. High temperatures also set the scene for wildfires that can emit huge amounts of pollutants, including dust and black carbon that, when settling on the sea ice, can cause its reflectivity to fall. Rivers furthermore feed warm water into the Arctic Ocean, further heating up the sea ice from below. 

The image below shows Arctic sea ice extent at June 3, 2015, when Arctic sea ice extent was merely 11.624 million square kilometers, a record low for the time of the year since satellite started measurements in 1979. 

Sea ice melting occurs due to heat from above, i.e. absorbed sunlight. Once the sea ice is gone, energy from sunlight that previously went into melting and transforming ice into water, will instead go into warming up the Arctic Ocean and the sediments under the seafloor.

In addition, sea ice is also melting due to heat from below. Much of this heat is carried by the Gulf Stream and by rivers into the Arctic Ocean. Once the sea ice is gone, all this heat will go into warming up the Arctic Ocean and the sediments under the seafloor.

The sea ice acts as a heat buffer by absorbing energy in the process of melting. In other words, as long as there is sea ice, it will absorb heat and this will prevent this heat from raising the temperature of the water in the Arctic. Once the sea ice is gone, this latent heat must go elsewhere.

As the sea ice heats up, 2.06 J/g of heat goes into every degree Celsius that the temperature of the ice rises. While the ice is melting, all energy (at 334J/g) goes into changing ice into water and the temperature remains at 0°C (273.15K, 32°F).

Once all ice has turned into water, all subsequent heat goes into heating up the water, at 4.18 J/g for every degree Celsius that the temperature of water rises.

The amount of energy absorbed by melting ice is as much as it takes to heat an equivalent mass of water from zero to 80°C. The energy required to melt a volume of ice can raise the temperature of the same volume of rock by 150º C.
Decline of Arctic sea ice means that a lot more heat will be absorbed by the Arctic Ocean.

Thick sea ice covered with snow can reflect as much as 90% of the incoming solar radiation. After the snow begins to melt, and because shallow melt ponds have an albedo (or reflectivity) of approximately 0.2 to 0.4, the surface albedo drops to about 0.75. As melt ponds grow and deepen, the surface albedo can drop to 0.15, while the ocean reflects only 6% of the incoming solar radiation and absorbs the rest.

As Professor Peter Wadhams, University of Cambridge, once calculated, a collapse of the sea ice would go hand on hand with dramatic loss of snow and ice cover on land in the Arctic. The albedo change resulting from the snowline retreat on land is similarly large as the retreat of sea ice, so the combined impact could be well over 2 W/sq m. To put this in context, albedo changes in the Arctic alone could more than double the net radiative forcing resulting from the emissions caused by all people of the world, estimated by the IPCC to be 1.6 W/sq m in 2007 and 2.29 W/sq m in 2013.

Professor Peter Wadhams on albedo changes in the Arctic

Update June 8, 2015: The website at shows that over the past few days temperatures over 30°C (86°F) were reached at several locations over rivers ending up in the Arctic Ocean.

The animation below, by ClimateReanalyzer, shows the heat wave and the storm that hit the Arctic recently.

This animation shows the current GFS model 8-day forecast for the Arctic for six meteorological parameters (precip/cloudcover; wind, pressure, precipitable water, temperature, temperature anomaly). The forecast begins with an impressive storm twirling around the North Pole with 10-meter winds peaking around 55 km/h (~35 mi/h), which fades as the low pressure breaks down. The storm is coupled to an early season heat wave that hit Siberia this week with the development of a high amplitude ridge in the jet stream.In mid August 2012, a comparable storm churned up the sea ice and contributed to the record minimum ice extent that emerged in September. Arctic sea ice is more resilient to wind in early June when it is still relatively thick and compacted than it is in mid August towards the end of the melt season. This current storm is therefore unlikely to have the same impact as the Aug 2012 storm. But the event is worth mentioning nonetheless.

Posted by Climate Reanalyzer on Sunday, June 7, 2015

Arctic sea ice extent at June 3, 2015, was merely 11.624 million square kilometers, a record low for the time of the...

Posted by Sam Carana on Friday, June 5, 2015

Sunday, 22 February 2015

Multiple Benefits Of Ocean Tunnels

By Sam Carana and Patrick McNulty

Comprehensive climate action will do more than just cutting emissions, it will also take further action, as pictured in the image below.

Comprehensive and effective action is discussed at the Climate Plan blog
Taking a broad perspective makes it easier for proposed projects to be assessed on their benefits in a multitude of areas.

Ocean tunnels can capture vast amounts of energy from ocean currents, such as the Gulf Stream and the Kuroshio Current. These locations are close to areas with high energy demand, such as the North American East Coast and the coast of East Asia, which can reduce the need for long distance transmission lines.

Ocean tunnels provide clean energy continuously, i.e. 24 hours a day, all year long. This makes that they can satisfy demand for electricity both at peak and off-peak usage times.

  • Their ability to supply large amounts of electricity at times of peak demand will benefit the necessary transition from polluting to clean ways of generating electricity.
  • Their ability to also supply large amounts of electricity at off-peak usage times will help to reduce the price of electricity at such times, thus opening up opportunities for a number of activities that can take place at off-peak hours and that require large amounts of energy.

    Such activities include large-scale grinding of olivine rock and transport of the resulting olivine sand, and large-scale production of hydrogen through electrolysis to power transport (box right). Electrolysis can also create oxygen-enriched water that can improve the quality of waters that are oxygen-depleted.  
Hydrogen to power Shipping

Ocean tunnels can make electricity cheap at off-peak times. This will reduce the cost of recharging batteries of electric vehicles at night.

It will also reduce the cost of producing hydrogen at off-peak hours. To power ships crossing the oceans, hydrogen looks more cost-effective, as such ships cannot return to base for a nighly battery recharge. Such ships have plenty of cargo space to carry hydrogen, even when the hydrogen is not highly compressed. Some of the world's largest ports are close to strong ocean currents.

Ocean tunnels can generate electricity in two ways, i.e. by capturing the kinetic energy contained in the flow of ocean currents, and by means of Ocean Thermal Energy Conversion (OTEC) using temperature differences between cooler deeper parts of the ocean and warmer surface waters to run a heat engine to produce energy. 

Besides generating energy, ocean tunnels can assist with further activities, which will increase the value of ocean tunnels in the fight against climate change. Such activities include the following:
  • By reaching deeper parts of the ocean, OTEC can pull up sunken nutrients and put them out at surface level to fertilize the waters there, while the colder water that is the output of OTEC will float down, taking along newly-grown plankton to the ocean depths before it can revert to CO2, as described in the earlier post Using the Oceans to Remove CO2 from the Atmosphere.
  • Ocean tunnels can be used to distribute olivine sand in the water. The force of the currents and the turbines will help the process of transforming olivine into bicarbonate. This can reduce carbon dioxide levels in the water by sequestering carbon, while also reducing ocean acidification. Olivine sand contains silicate and small amounts of iron, allowing diatoms to grow that will capture additional carbon dioxide, while also raising levels of free oxygen in the water. The latter will stimulate growth of microbes that break down methane in the water before it reaches the atmosphere. Further nutrients can be added, as also discussed in this earlier post
  • Ocean tunnels can also assist with albedo changes. Ocean tunnels can act as the infrastructure to create water microbubbles along their track. Increasing water albedo in this way can reduce solar energy absorption by as much as 100 W m − 2, potentially reducing equilibrium temperatures of standing water bodies by several Kelvins, as Russel Seitz wrote back in 2010. There may also be potential for ocean tunnels to be used to spray water vapor into the air with the aim of brightening clouds over areas where it counts most.
  • The turbines in tunnels will also reduce the flow of ocean currents somewhat, thus reducing the flow of warm water into the Arctic. Furthermore, tunnels can be shaped in ways to guide the flow of warm water away from the Arctic Ocean down a southwards course along the Canary Current along the coast of West Africa. thus diverting warm water that would otherwise end up in the Arctic Ocean. This could also reduce the chance of hurricanes hitting the east coast of North America, as Sandy did in 2012.  
The Gulf Stream, carrying warm water all the way into the Arctic Ocean

Monday, 16 February 2015

Climate Changed

Our climate has changed, as illustrated by the image below (Forecast for Feb. 23, 2015, 1200 UTC, run on Feb. 16, 2015).

The left map shows temperatures of 40 degrees below zero moving down into North America from the Arctic, while temperatures in much of Alaska are above freezing point. The right map shows temperature anomalies over large parts of North America at both the top end (red) and the bottom end (purple) of the scale. Temperature anomaly forecasts for the week from Feb 19 to 26, 2015, feature in the video below.

Below is an update showing operational temperature anomalies recorded on February 23, 2015.

As parts of North America experienced record cold, part of Alaska was more than 20°C (36°F)
warmer than it used to be (compared to 1985-1996). And despite the cold weather in parts of Canada and Greenland, the Arctic as a whole is forecast to reach, on February 26, temperature anomalies as much as 3.32°C (6°F) above what temperatures used to be from 1979 to 2000 (Climate Reanalyzer forecast data).

What has caused our climate to change in this way? The image below shows that the jet stream, which once used to move over North America horizontally, has become more wavy, pushing warm air north on the left, while drawing cold air from the Arctic south on the right.

Importantly, while the jet stream is becoming more wavy or elongated vertically, the speed at which it crosses the oceans can increase dramatically. This can be the case where low temperatures over land and high sea surface temperatures combine to create huge temperature differences that drive up the jet stream's speed over oceans.

This is illustrated by the image below showing the Jet Stream reaching speeds as high as 410 km/h (or 255 mph) at the green circle near Greenland on January 9, 2015 (left), and speeds as high as 403 km/h (or 250 mph) at the green circle near Greenland on February 20, 2015 (right).

The reference map on the right shows the location of the continents for the same orthgraphic coordinates as the maps above and below.

Similarly, the Polar Vortex can reach high speeds, driving cold air downward over North America and driving warm air upward over Greenland and the North Atlantic.

The image below shows the Polar Vortex reaching speeds as high as 346 km/h (or 215 mph) at the green circle near Svalbard on January 18, 2015 (left), and speeds as high as 316 km/h (or 196.4 mph) at the green circle over the Arctic Ocean on February 9, 2015 (right).

Almost one year ago, the Polar Vortex also reached speeds as high as 410 km/h (or 255 mph), as discussed in an earlier post. Changes to the polar vortex and the jet stream are caused by emissions, and the situation looks set to deteriorate even further.

Above image illustrates that, on February 16, 2015, waves higher than 10 m (32.81 ft) were recorded off the east coast of North America and south of Iceland, while waves as high as 8.15 m (26.74 ft) were recorded in between Norway and Svalbard.

As above images also illustrate, changed wind patterns are carrying warm air high up into the Arctic.

The air that is moving north is much warmer than it used to be, as sea surface temperatures off the east coast of North America are much higher than they used to be (image left and as discussed in an earlier post).

Strong winds increase the volume of warm water that the Gulf Stream carries into the Arctic Ocean. They can also cause rain storms that can devastate Arctic ice and glaciers

Arctic sea ice currently has about the lowest extent for the time of the year since satellite measurements started in 1979.

The image below shows that, on February 17, 2015, Arctic sea ice had reached an extent of merely 14.406 million square kilometers.

click on image to enlarge
The Arctic sea-ice Monitor image below shows an extent of 13,774,725 km2 for February 18, 2015, with the red line illustrating the recent fall in extent even more dramatically.

Below is a 30-day animation showing sea ice thickness (in m) up to February 22, 2015 (and forecast up to March 2), from the U.S. Naval Research Laboratory.

As the Arctic's snow and ice cover decline, more sunlight gets absorbed that previously was reflected back into space. All this adds up to a very dangerous situation, since huge amounts of methane are contained in sediments under the seafloor of the Arctic Ocean, and they can get destabilized as the water warms up.

In conclusion, feedbacks make that the Arctic is warming more rapidly than the rest of the globe and they threaten to trigger huge methane eruptions from the seafloor of the Arctic Ocean.

Methane concentrations over the Arctic Ocean are very high at the moment. The image below shows the very high peak methane levels that have recently been recorded, against a background image showing high methane levels over the East Siberian Arctic Shelf on February 20, 2015.

The situation is dire and calls for comprehensive and effective action, as discussed at the Climate Plan blog.