Showing posts with label hydrates. Show all posts
Showing posts with label hydrates. Show all posts

Thursday 1 October 2015

Cyclones continue to hit Northern Hemisphere

As the 2015 El Niño gets stronger, the Northern Hemisphere continues to get hit by strong winds and cyclones. The image below shows strong winds over the Arctic Ocean, as hurricane Joaquin approaches the coast of North America.



On above image, hurricane Joaquin is clocked at a speed of 79 mph (127 km/h) on October 1, 2015. NOAA warned that on that day the maximum sustained wind speed had increased to near 120 mph (195 km/h) with higher gusts.

For reference, NOAA uses four categories:
D: Tropical Depression – wind speed less than 39 mph (63 km/h)
S: Tropical Storm – wind speed between 39 mph and 73 mph (63 km/h - 118 km/h)
H: Hurricane – wind speed between 74 mph and 110 mph (118 km/h - 177 km/h)
M: Major Hurricane – wind speed greater than 110 mph (over 177 km/h)

NOAA issued the image below on September 30, 2015, warning that Hurricane Joaquin is likely to cause wind damage across a large part of the eastern coast of North America.


The NOAA animation below gives an idea of the strength of hurricane Joaquin.

[ click on image to enlarge, note that this is a 1.4 MB file that may take some time to fully load ]

Meanwhile, sea surface temperatures off the North American coast, as well as in the Arctic Ocean, are very high, as illustrated with the image on the right.

In the Arctic Ocean, the sea ice in many places is now less thick than it was in 2012, as illustrated by the image further below, showing sea ice thickness on October 7, 2012 (panel left) and a forecast for October 7, 2015 (panel right).

The water in the Arctic Ocean was already very warm this year. The main factor causing both these strong winds and the dramatic decrease in thickness of the multi-year sea ice is ocean heat, as also illustrated by the image below, showing high sea surface temperature anomalies in the Arctic as at September 30, 2015.


As the image below shows, nearly all the thick (over 3 m) multi-year sea ice has now disappeared, setting up a dangerous situation for the future that is much more dangerous than the situation was back in 2012. The thicker sea ice used to act as a buffer, consuming ocean heat in the melting process. Without thicker sea ice, ocean heat threatens to melt the sea ice from below right up to the surface, causing the entire sea ice to collapse as more open water will go hand in hand with stronger winds and waves. In case of such a collapse, sunlight that was previously reflected back into space will instead be absorbed by the water, causing rapid rise of the temperature of the water. In places such as the East Siberian Arctic Shelf, the water is on a average only 50 m deep, so warmer water is able to reach the seafloor more easily there.


The water of the Arctic Ocean is very warm, not only at the surface, but even more so underneath the surface. The danger is that strong winds will mix warm water all the way down to the seafloor, where it could destabilize sediments that can contain huge amounts of methane in the form of hydrates and free gas.

[ click on image to enlarge ]
The image on the right illustrates the impact of winds over the East Siberian Arctic Shelf on September 26, 2015.

NSIDC specialist Julienne Stroeve recently warned"In 2007 more than 3m of bottom melt was recorded by [an] ice mass balance buoy in the region, which was primarily attributed to earlier development of open water that allowed for warming of the ocean mixed layer. But perhaps some of this is also a result of ocean mixing."

As discussed in an earlier post, sea surface anomalies of over 5°C were recorded in August 2007 in the Arctic Ocean. Strong polynya activity caused more summertime open water in the Laptev Sea, in turn causing more vertical mixing of the water column during storms in late 2007 and bottom water temperatures on the mid-shelf increased by more than 3 degrees Celsius compared to the long-term mean.

The situation is dire and calls for comprehensive and effective action, as discussed at the Climate Plan.



As the 2015 El Niño gets stronger, the Northern Hemisphere continues to get hit by strong winds and cyclones. The image...
Posted by Sam Carana on Thursday, October 1, 2015

Friday 25 September 2015

Warming Arctic Ocean Seafloor Threatens To Cause Huge Methane Eruptions

Rapidly growing 'Seal' over Arctic Ocean



Arctic sea ice extent and especially concentration are now growing rapidly, as illustrated by the Naval Research Lab animation on the right.

This means that the sea ice is effectively sealing off the water of the Arctic Ocean from the atmosphere, reducing the chances of transfer of ocean heat from the water to the atmosphere. Conversely, the risk grows that ocean heat will reach the seafloor.

Furthermore, this seal makes that less moisture evaporates from the water, which together with the change of seasons results in lower hydroxyl levels at the higher latitudes of the Northern Hemisphere, in turn resulting in less methane being broken down in the atmosphere over the Arctic.

Rising Ocean Heat



Water temperatures are very high in the Arctic. Above image shows Arctic sea surface temperature anomalies as at September 24, 2015. The risk of ocean heat reaching the Arctic Ocean seafloor has increased significantly over the years, due to rising ocean heat, as illustrated by the graph below, showing August sea surface temperature anomalies on the Northern Hemisphere over the years. 

[ from the earlier post: August 2015 Had Highest Sea Surface Temperature on Record ]
Ocean heat is increasing because people's emissions are making the planet warmer and more than 93% of the extra heat goes into the oceans.

Ocean temperatures have been measured for a long time. Reliable records go back to at least 1880. Ever since records began, the oceans were colder than they are now. Back in history, there may have been higher temperature peaks - the last time when it was warmer than today, during the Eemian Period, peak temperature was a few tenths of a degree higher than today. In many ways, however, the situation now already looks worse than it was in the Eemian. "The warm Atlantic surface current was weaker in the high latitude during the Eemian than today", says Henning Bauch. Furthermore, carbon dioxide levels during the Eemian were well under 300 ppm. So, there could well have been more pronounced seasonal differences then, i.e. colder winters that made that the average ocean temperature didn't rise very much, despite high air temperature in summer. By contrast, today's high greenhouse levels make Earth look set for a strong ocean temperature rise.

And indeed, this is illustrated by above image, showing a polynomial trendline that points at a rise of almost 2°C by 2030. This trendline is contained in ocean temperature data from 1880 for the August Northern Hemisphere sea surface temperature anomalies.

Cold Freshwater 'Lid' on North Atlantic



Note that the above ocean temperature graph and the above video only show sea surface temperatures. Underneath the surface, water can be even warmer. The Gulf Stream reaches its maximum temperatures off the North American coast in July. It can take some four months for this heat to travel along the Gulf Coast and reach destinations farther in the Arctic Ocean. Water warmed up off Florida in July may only reach waters beyond Svalbard by October or November.

The image below shows that on August 22, 2015, at a location near Florida marked by the green circle, sea surface temperatures were as high as 33.4°C (92.1°F), an anomaly of 3.8°C (6.8°F).


The image below shows sea surface temperatures on August 22, 2015, as an indication of the huge amount of ocean heat has accumulated in the Atlantic Ocean off the coast of North America.


The huge amounts of energy entering the oceans translate into higher temperatures of the water and of the air over the water, as well as higher waves and stronger winds.

Ocean heat carried by the Gulf Stream from Florida via the North Atlantic into the Arctic Ocean.
The image on the left shows that on August 25, 2015, sea surface temperatures near Svalbard were recorded as high as 17.3°C (63.1°F), as marked by the green circle, a 12.1°C (21.8°F) anomaly.

This indicates that ocean heat did reach that location from underneath the sea surface. In other words, subsurface temperatures of the water carried along by the Gulf Stream can be substantially higher than temperatures of the water at the surface, and this can be the case for the water all the way from the coast of North America to the Arctic Ocean.

The Gulf Stream keeps pushing much of this very warm water north, into the Arctic Ocean, where it threatens to unleash huge methane eruptions from the Arctic Ocean seafloor.

The combination image below shows the Gulf stream carrying warm water from the coast of North America into the Arctic Ocean on September 12, 2015, and sea surface reaching temperatures as high as 14.6°C (58.3°F) that day at a location near Svalbard (marked by green circle), an 9.8°C (17.6°F) anomaly

[ click on image to enlarge ]
The combination image below shows that sea surface temperature anomalies still are very high. The left panel shows that anomalies on September 25, 2015 were as high as +6°C (+10.8°F) in the North Atlantic (location marked by green circle), compared to 1901-2011. The right panel shows anomalies on September 26, 2015, in the North Atlantic of +0.81°C (+1.46°F) and in the North Pacific of +1.02°C (+1.84°F), compared to 1971-2000.


Below is an update on the situation. On October 5, 2015, sea surface temperature anomalies were as high as 6.4°C, 7.4°C and 7.3°C (11.5°F 13.2°F and 13.1°F) off the North American coast, and as high as 9.4°C (16.8°F) near Svalbard.


Speed of surface water was as high as 1.6 m/s (3.6 mph) on October 5, 2015. This wasn't as high as some of the speeds reached earlier in the year (a speed of 2.16 m/s or 4.7 mph was recorded on August 15, 2015), but it does indicate how strong the Gulf Stream still is at this time of year. Water speed slows down as the Gulf Stream progresses toward the Arctic Ocean. While speeds as high as 0.22 m/s and 0.24 m/s (0.5 mph) were recorded near Svalbard and Norway, overall speed was a lot lower in this part of the Atlantic.

What is making the situation worse is depicted in the images below. From 2012, huge amounts of freshwater have run off Greenland, with the accumulated freshwater now covering a huge part of the North Atlantic, as illustrated by the image below. 


Since it's freshwater that is now covering a large part of the surface of the North Atlantic, it will not easily sink in the very salty water that was already there. The water in the North Atlantic was very salty due to the high evaporation, which was in turn due to high temperatures and strong winds and currents. As said, freshwater tends to stay on top of more salty water, even though the temperature of the freshwater is low, which makes this water more dense. The result of this stratification is less evaporation in the North Atlantic, and less transfer of ocean heat to the atmosphere, and thus lower air temperatures than would have been the case without this colder surface water.


As meltwater accumulates at the surface of the North Atlantic, will it slow down the Gulf Stream?

More elongated curves and eddies forming where the meltwater meets the Gulf Stream appears to make that it will indeed take longer for surface water to travel from the coast of North America to the Arctic Ocean. However, the speed reached within such eddies may actually be higher. After all, the amount of extra heat that enters the oceans keeps growing and this extra energy will likely translate into warmer water carried in greater volumes and at higher speed by the Gulf Stream underneath the surface of the North Atlantic into the Arctic Ocean, be it that the more curved patterns of the currents will increase the overall time it takes for water to travel the distance, especially at the surface.

Importantly, as global warming continues to heat up the oceans, the accumulated freshwater at the surface of the North Atlantic makes that less ocean heat can be transferred from the water to the atmosphere there, i.e. the freshwater is acting like a lid. Similarly, the Arctic sea ice is acting as a seal over the Arctic Ocean, as seasons change. In conclusion, the highest temperatures of the water of the Arctic Ocean, especially at greater depth, are yet to be reached this year.


Above image illustrates that, while Arctic sea water at the surface reaches its highest temperatures in the months from July to September, water at greater depth reaches its highest temperatures only in October through to the subsequent months.

Methane Eruptions from Arctic Ocean Seafloor

In the Arctic Ocean, this more salty newly-arriving warm water will tend to dive under the freshwater that has formed from the melting of sea ice over the past few months. The danger is thus that warmer water will be pushed into the Arctic Ocean at lower depth, and that it will reach the seafloor of the Arctic Ocean.

Huge amounts of methane are contained in sediments on the Arctic Ocean seafloor. Ice acts like a glue, holding these sediments together and preventing destabilization of methane hydrates. 

Pingos and conduits. Hovland et al. (2006)
Warmer water reaching these sediments can penetrate them by traveling down cracks and fractures in the sediments, and reach the hydrates. The image on the right, from a study by Hovland et al., shows that hydrates can exist at the end of conduits in the sediment, formed when methane did escape from such hydrates in the past. Heat can travel down such conduits relatively fast, warming up the hydrates and destabilizing them in the process, which can result in huge abrupt releases of methane.

Heat can penetrate cracks and conduits in the seafloor, destabilizing methane held in hydrates and in the form of free gas in the sediments.

Elsewhere, methane hydrates will typically be located at great depth, making it more difficult for ocean heat to reach them. In the Arctic, much of the water is very shallow. The East Siberian Arctic Shelf (ESAS) is on average only 50 m deep, making it easier for heat to reach the seafloor and also making that methane that escapes will have to travel through less water, reducing the chances that methane will be broken down by microbes on the way up through the water. Furthermore, hydroxyl levels are very low over the Arctic, making that the methane will not quickly be broken down in the atmosphere over the Arctic either.

The big melt in Greenland and the Arctic in general is causing further problems. Isostatic adjustment following melting can contribute to seismic events such as earthquakes, shockwaves and landslides that can destabilize methane hydrates contained in sediments on the Arctic Ocean seafloor.


Above image shows methane levels as high as 2554 parts per billion, on the morning of September 23, 2015, in the bottom panel, and strong methane releases over the ESAS, as indicated by the solid magenta-colored areas in the top panel, on the afternoon of the previous day at lower altitude. These are indications of methane releases from the seafloor of the Arctic Ocean. Strong winds over the ESAS, as the image below shows, may have contributed, by mixing warm water down to the seafloor.


On the morning of September 25, 2015, methane reached levels as high as 2629 ppb, while mean global level reached a record high 1846 ppb. The video below, created with Climate Reanalyzer images,  shows strong winds over the Arctic for the period September 26 to October 3, 2015.


The video below, created by Cameron Forge with Climate Reanalyzer images, shows Arctic air temperature anomalies end September - early October, 2015.



Air Temperature Rise

NOAA data show that the year-to-date land surface temperature in July was 1.47°C above the 20thcentury average on the Northern Hemisphere in 2015. A polynomial trendline based on these data points at yet another degree Celsius rise by 2030, on top of the current level, which could make it 3.27°C warmer than in 1750 for most people on Earth by the year 2030, as illustrated by the image below.

Will it be 3.27°C warmer by the year 2030?
The image below shows a non-linear trend that is contained in the temperature data that NASA has gathered over the years, as described in an earlier post. A polynomial trendline points at global temperature anomalies of over 4°C by 2060. Even worse, a polynomial trend for the Arctic shows temperature anomalies of over 4°C by 2020, 6°C by 2030 and 15°C by 2050, threatening to cause major feedbacks to kick in, including albedo changes and methane releases that will trigger runaway global warming that looks set to eventually catch up with accelerated warming in the Arctic and result in global temperature anomalies of 16°C by 2052.
[ click on image to enlarge ]
The situation is dire and calls for comprehensive and effective action, as discussed at the Climate Plan.



In the Arctic Ocean, the more salty newly-arriving warm water will tend to dive under the freshwater that has formed...
Posted by Sam Carana on Friday, September 25, 2015

Tuesday 18 August 2015

Disappearance Of Thick Arctic Sea Ice

[ view full image at facebook ]


Arctic sea ice is in a horrible state. On August 16, 2015, Arctic sea ice extent was 5.786 million square km, the smallest extent on record for this time of year except for the years 2007, 2011 and 2012, as illustrated by the image on the right.

The situation today is even worse than one might conclude when looking at sea ice extent alone. Thick sea ice is virtually absent compared to the situation in the year 2012 around this time of year, as illustrated by the image below comparing sea ice thickness on August 16, 2012 (left) with August 16, 2015 (right).


The ice used to be over 4 m thick, or over 13 ft thick, north of Greenland and the Canadian Archipelago. This thick multi-year ice has been a feature of the Arctic sea ice for over 100,000 years. It used to be there all year long, unlike the thinner ice that could melt away entirely during the melting season.

The disappearance of this thick multi-year ice is a major development. Why? Until now, the thicker multi-year sea ice used to survive the melting season, giving the sea ice strength for the next year, by acting as a buffer to absorb heat that would otherwise melt away the thinner ice. Without multi-year sea ice, the Arctic will be in a bad shape in coming years, and huge amounts of heat that would otherwise go into melting the ice will instead be warming up the Arctic Ocean, further accelerating warming of its waters.

Absence of thick sea ice makes it more prone to collapse, and this raises the question whether the sea ice could collapse soon, even this year. Sea ice works like a mirror. Without sea ice, sunlight that was previously reflected back into space, will instead be absorbed by the Arctic. Albedo changes in the Arctic alone could more than double the net radiative forcing resulting from the emissions caused by all people of the world, as calculated by Prof. Peter Wadhams back in 2012.

Furthermore, there is a danger that loss of the sea ice will weaken the currents that currently cool the bottom of the sea, where huge amounts of methane may be present in the form of free gas or hydrates in sediments. This danger is illustrated by the image below by Reg Morrison, from an earlier post.


Absence of sea ice also goes hand in hand with opportunities for storms to develop over the Arctic Ocean. Such storms could push the remaining sea ice out of the Arctic Ocean. Such storms could also mix surface heat all the way down to the seafloor, where methane could be contained in sediments.

As described in an earlier post, sea surface anomalies of over 5 degrees Celsius were recorded in August 2007 (NOAA image right). Strong polynya activity caused more summertime open water in the Laptev Sea, in turn causing more vertical mixing of the water column during storms in late 2007, as described in this study, and bottom water temperatures on the mid-shelf increased by more than 3 degrees Celsius compared to the long-term mean.

Indeed, the danger is that heat will warm up sediments under the sea, containing methane in hydrates and as free gas, causing large amounts of this methane to escape rather abruptly into the atmosphere.

The image on the right, from a study by Hovland et al., shows that hydrates can exist at the end of conduits in the sediment, formed when methane did escape from such hydrates in the past.

Heat can travel down such conduits relatively fast, warming up the hydrates and destabilizing them in the process, which can result in huge abrupt releases of methane.

Since waters can be very shallow in the Arctic, much of the methane can then rise up through these waters without getting oxidized. As the methane causes further warming in the atmosphere, this will contribute to the danger of even further methane escaping, further accelerating local warming, in a vicious cycle that can lead to catastrophic conditions well beyond the Arctic. For additional feedbacks in the Arctic, see the feedbacks page

At the same time, ocean heat is at a record high and there's an El Niño that's still gaining strength. This ocean heat is likely to reach the Arctic Ocean in full strength by October 2015, at a time when sea ice may still be at its minimum. The image below shows sea surface temperatures on August 16, 2015 (left) and anomalies (right).


How warm is the water entering the Arctic Ocean? Merely looking at sea surface temperatures could make one overlook the full extent of the predicament we are in. Ocean heat traveling underneath the sea surface can be even warmer than temperatures showing up at the surface. This is illustrated by the image below indicating that on August 16, 2015, warm water emerged at the sea surface near Svalbard with temperatures as high as 14.9°C or 58.7°F, a 9.5°C or 17.1°F anomaly.


There still is about a month to go before sea ice can be expected to reach its minimum, at around half September 2015, while sea currents will continue to carry warmer water into the Arctic Ocean for months to come.

The situation is dire and calls for comprehensive and effective action, as discussed in the Climate Plan


Thick sea ice is virtually absent compared to the situation in the year 2012 around this time of year, as illustrated by...
Posted by Sam Carana on Tuesday, August 18, 2015

Sunday 9 August 2015

The Methane Monster


At no time in the past did humans exist under conditions that we are facing now, no matter how far back you go in history.

Global mean methane levels as high as 1840 parts per billion were recorded on August 4, 2015. This is the highest mean level since records began and this new record is likely to be superseded by even higher levels soon.

The carbon dioxide that is released now will only reach its peak impact a decade from now. Methane's high immediate impact makes it more important than carbon dioxide emissions in driving the rate of global warming over the coming decade.

The Pacific Ocean is very warm at the moment. Warm water flows from the Pacific Ocean through the Bering Strait into the Arctic Ocean. Sea surface temperatures in the Bering Strait were as high as 20.5°C (or 69.1°F) on August 4, 2015. That is 8.7°C (or 15.6°F) warmer than the water used to be. Sea surface temperatures as high as 11.8°C (53.2°F) were recorded in between Greenland and Svalbard on August 7, 2015, an anomaly of 8.5°C (15.3°F).

[ click on image to enlarge ]
The danger is that further warming will cause collapse of the sea ice, which in turn will lead to even more rapid warming of the Arctic Ocean, while the presence of more open water will also increase the opportunity for powerful storms to develop that can mix high sea surface temperatures all the way down to the seafloor, resulting in destabilization of sediments and triggering releases of methane that can be contained in such sediments in huge amounts.

Methane releases from the seafloor of the Arctic ocean threaten to cause rapid local warming that in turn will trigger further methane releases, in a vicious cycle of runway warming that could destroy habitat for humans within decades.

[ click on image to enlarge ]
The situation is dire and calls for comprehensive and effective action as discussed at the Climate Plan at the Arctic-News Blog.


References

-  Sea surface temperatures in the Bering Strait on August 4, 2015. 

- Sea surface temperatures in between Greenland and Svalbard on August 7, 2015.
http://earth.nullschool.net/#2015/08/07/0000Z/ocean/surface/currents/overlay=sea_surface_temp_anomaly/orthographic=18.75,79.02,3000

- Maximum warming occurs about one decade after a carbon dioxide emission, by Katharine L Ricke and Ken Caldeira (2014)
http://iopscience.iop.org/1748-9326/9/12/124002/article

- Methane's Global Warming Potential
http://arctic-news.blogspot.com/p/faq.html#13



THE METHANE MONSTER - by Sam Carana At no time in the past did humans exist under conditions that we are facing now,...
Posted by Sam Carana on Sunday, August 9, 2015

Sunday 19 July 2015

Arctic Sea Ice Collapse Threatens - Update 1

The image below compares the Arctic sea ice thickness (in m) on July 15, for the years from 2012 (left panel) to 2015 (right panel), using Naval Research Laboratory images.

Click on image to enlarge
The image below compares the Arctic sea ice concentration (in %) on July 18, for the years from 2012 (left panel) to 2015 (right panel), using Naval Research Laboratory images.


Above images show the dramatic decline of the sea ice in 2015, both in thickness and in concentration.

In terms of thickness, sea ice has been reduced by more than one meter in many places, such as north of Greenland and the Canadian Archipelago, all in the time span of just one month.

The dramatic fall in sea ice concentration also becomes apparent when comparing recent sea ice concentration (July 18, 2015, above right) with sea ice concentration back in May 2015 (image right, May 1, 2015).

This dramatic decline of the sea ice in 2015 is the result of a combination of factors, including:

  1. High levels of greenhouse gases over the Arctic Ocean, as illustrated by the image below, showing that on July 17, 2015 (pm), levels as high as 2512 parts per billion were recorded at 6,041 m (19,820 ft) altitude, while mean methane levels were 1830 parts per billion at this altitude.
  2. High levels of ocean heat, as illustrated by the image below showing high sea surface temperatures off the east coast of North America; much of this ocean heat will be carried by the Gulf Stream into the Arctic Ocean over the next few months.
  3. High air temperatures over North America and Siberia extending over the Arctic Ocean, as illustrated by the image below showing a temperature of 23.1°C (73.7°F), recorded on July 19, 2015, at Banks Island, in the Canadian Archipelago (green circle).
  4. Wildfires triggered by these heatwaves resulting in darkening compounds settling on snow and ice, as illustrated by the image below showing smoke covering a wide area on July 19, 2015, from the east Siberia over North America to the southern tip of Greenland.
  5. Very warm river water running into the Arctic Ocean, as illustrated by the image below, showing sea surface temperatures as high as 19°C (66.2°F) off the coast of Alaska on July 12-15, 2015.
The image below shows the already very high sea surface temperature anomalies as at July 18, 2015.

The Climate Reanalyzer image below shows the high sea surface temperature anomalies in the Pacific Ocean, and where water enter the Arctic Ocean through the Bering Strait, on July 19, 2015.



With still two months of melting to go before the sea ice can be expected to reach its minimum for 2015, the threat of sea ice collapse is ominous. The Arctic-News Blog has been warning for years about the growing chance of a collapse of the sea ice, in which case huge amounts of sunlight that previously were reflected back into space, as well as heat that previously went into melting the ice, will then instead have to be absorbed by the water, resulting in a dramatic rise of sea surface temperatures.

More open water will then come with an increased chance of storms that can cause high sea surface temperatures to be mixed down all the way to seafloor of the Arctic Ocean, which in many cases is less than 50 m (164 ft) deep. This is the case for the East Siberian Arctic Shelf, where experts estimate that huge amounts of methane are contained in subsea sediments. Already now, sea surface temperatures as high as 10°C (~50°F) are recorded there, as illustrated by the image below.


Massive amounts of ocean heat will be carried by the Gulf Stream into the Arctic Ocean over the next few months. The combined result of high sea surface temperatures being mixed down to the seafloor and the ocean heat entering the Arctic Ocean from the Atlantic and Pacific Oceans can be expected to result in dramatic methane eruptions from the Arctic Ocean seafloor by October 2015.

The situation is dire and calls for comprehensive and effective action, as discussed at the Climate Plan.



Arctic sea ice thickness on July 15, compared over the years 2012 through to 2015. Already virtually all the thick sea...

Posted by Sam Carana on Thursday, July 16, 2015

Friday 10 April 2015

North Siberian Arctic Permafrost Methane Eruption Vents

Mantle Methane Leakage via Late Permian Deep Penetrating Fault and Shear Fracture Systems Rejuvenated by Carbon Dioxide and Methane Induced Global Warming

By Malcolm P.R. Light, Harold H. Hensel and Sam Carana

Abstract

In North Siberia some 30 permafrost methane eruption vents occur along the trend of the inner (continental side) third of the Late Permian Taimyr Volcanic Arc where the crust and mantle were the weakest and the most fractured. Deep penetrating faults and shear systems allowed molten basaltic magmas charged with large volumes of carbon dioxide and methane free access to the surface where they formed giant pyroclastic eruptions. The large volume of carbon dioxide and methane added to the atmosphere by this Late Permian volcanic activity led to a massive atmospheric temperature pulse that caused a major worldwide extinction event (Wignall, 2009). These deep penetrating fractures form a major migration conduit system for the presently erupting methane vents in the North Siberian permafrost and the submarine Enrico PV Anomaly. During periods of lower atmospheric carbon dioxide and lower temperatures, the permafrost methane vents became sealed by the formation of methane hydrate (clathrate) plugs forming pingos. The surface methane clathrate plugs are now being destabilized by human pollution induced global warming and the mantle methane released into the atmosphere at the permafrost methane explosion vents. This has opened a giant, long standing (Permian to Recent) geopressured, mantle methane pressure-release safety valve. There is now no fast way to reseal this system because it will require extremely quick cooling of the atmosphere and the Arctic Ocean. The situation calls for comprehensive and effective action, including breaking down the methane in the water before it gets into the atmosphere using methane devouring symbiotic bacteria (Glass et al. 2013) and simultaneously breaking down the existing atmospheric methane using radio-laser systems which can also form methane consuming hydroxyl molecules (Alamo and Lucy Projects, Light and Carana, 2012, 2013).


Permafrost Methane Eruption Vents

During 2014 and 2015 at least 30 methane eruption vents, 7 of which are very large were identified in northern Siberia in the permafrost (Figures 1 to 3)(Zulinova in Liesowska 2015, Wales, 2015, Wignall 2009, Light 2014, Scribbler R., 2015). Of the seven major methane eruption vents (craters) in the Arctic area, 5 are on the Yamal Peninsula, one is in the Yamal Autonomous District and the seventh near Krasnoyarsk close to the Taimyr Peninsula (Figure 3, Liesowska, 2015). This permafrost methane eruption vent zone correlates with the inner third of the continental side of the Late Permian Age Taimyr Volcanic Arc where the top of the underlying Permian subduction zone lay at a depth between 200 km and 225 km (Figure 3, Light 2014). These methane eruption vents occur along fracture systems, transform faults, strike slip-slip faults oblique to the subduction direction and normal fault lines that also cut the Permian volcanic arc and the permafrost up to the continental edge of the arc (Figure 3).


Late Permian Extinction Event

In the Late Permian a massive eruption phase occured along the entire central and north eastern part of the "Taimyr Volcanic Arc" producing an extremely wide and thick sheet-like succession of flood trap lavas and tuffs (Siberian Traps Large Igneous Province) that spread south eastwards over the Siberian Craton (Figure 2, Light 2014). During the Late Permian there was a major global extinction event which resulted in a large loss of species caused by catastrophic methane eruptions from destabilization of subsea methane hydrates in the Paleo-Arctic (Figures 2, 3 and 4)(Wignall 2009, Light 2014, Scribbler 2015, Merali 2004, Goho 2004, Scott et al, PNAS, Dawson 1967, Kennedy and Kennedy, 1976). Extreme global warming was caused when vast volumes of carbon dioxide were released into the atmosphere from the widespread eruption of volcanics in northern Siberia (Figure 2; Wignall 2009) whose main source zone, the "Taimyr Volcanic Arc" on land in northern Siberia (Figure 3) is not a great distance from the present trend of the Arctic Ocean Gakkel Ridge and the Enrico Pv Anomaly extreme methane emission zone. Because the Arctic forms a graveyard for subducted plates, the mantle there is highly fractured and it is also a primary source zone for mantle methane formed from the reduction of oceanic carbonates by water in the presence of iron (II) oxides buried to depths of 100 km to 300 km in the Asthenosphere and at temperatures above 1200°C (Figure 4)(Gaina et al. 2013; Goho 2004; Merali 2004; Light 2014).

In addition to the widespread eruption of volcanics in Northern Siberia in the Late Permian (250 million years ago), swarms of pyroclastic kimberlites also erupted between 245 and 228 million years ago along a NNE trending shear system in the mantle which extends up the east flank of the Lena River delta and intersects the Gakkel Ridge slow spreading ridge on the East Siberian Arctic Shelf (Figure 4). Cenozoic volcanics also occur to the north and north east of the Lena River delta marking the trend of the slow spreading Gakkel Ridge on the East Siberian Arctic Shelf (Sekretov 1998). All this pyroclastic activity along the slow spreading Gakkel Ridge from the Late Permian to the present is evidence of deep pervasive vertical mantle fracturing and shearing which has formed conduits for the release of carbon dioxide and deeply sourced mantle methane out of Siberia and the Arctic sea floor into the atmosphere (Light 2014).

Thermodynamic Conditions Necessary to form Mantle Methane

On a vertical temperature - pressure/ depth cross section (Figure 4) the surface methane eruption vents are fed from vertical crustal and mantle fractures from more deeply sourced mantle methane below 225 km depth that has migrated up the fractured and sheared surface of the Late Permian subducting oceanic plate and then entered the vertical fractures allowing it to the surface where the methane is now erupting along the inner (continental side) third of the "Taimyr Volcanic Arc" (Dawson, 1967, Kennedy and Kennedy 1976. Merali 2004, Goho 2004, Scott et al, PNAS, Light 2014). What is remarkable is that the present surface methane eruption vent region corresponds exactly to the zone where the crust and mantle was the weakest in the Late Permian because the continental rock melt line (dry solidus) rises steeply to within a few km of the surface peaking exactly in the centre of zone defined by the methane eruption vents (Figure 4).

This implies that in the Late Permian, the inner continental side of the volcanic arc was a region of intense pyroclastic volcanic activity because the lavas were highly charged in carbon dioxide and methane. The eruption of these gases led to massive peak in global warming that culminated in the Major Late Permian Extinction Event when mean global atmospheric temperatures exceeded 26.6°C (Wignall. 2009).

This inner (continental side) third of the "Taimyr Volcanic Arc" was thus severly fractured by extreme pyroclastic volcanic activity and gas effusions in the Late Permian and has remained so up to the present day thus forming a major migration conduit system for the presently erupting methane vents in the Siberian permafrost. During periods of lower atmospheric carbon dioxide and lower temperatures the permafrost methane vents became sealed by the formation of methane hydrate (clathrate) plugs forming pingos (Figures 5, 6 and 7; Hovland et al. 2006; Paull et al., 2007; Carana, 2011, Liesowska, 2015). The surface methane clathrate plugs have now been destabilized by human pollution induced global warming and the methane is being released into the atmosphere at the permafrost methane explosion vents. Extreme methane concentrations, up to 1000 times above the mean atmospheric level has been found at the base of the methane eruption vents by Russian scientists (Holthaus, 2015) confirming that they are still linked to deeper methane sources which may be geopressujred. Before the Yamal B1 methane eruption vent developed, hillocks (pingoes) rose in the permafrost heralding the coming massive methane gas eruption (Figure 7; Liesowska, 2015). Other pingoes adjacent to the Yamal B1 methane eruption vent could also collapse at any moment emitting a large cloud of methane gas (Liesowska, 2015).
In the Last Ice age, the methane seal system (methane hydrate pingos) was maintained by the low temperatures and trapped the mantle methane below the ground. Now however human pollution which caused a massive carbon dioxide atmospheric buildup exceeding 400 ppm has started to break the seals on the mantle methane fractures in 2014 and 2015 allowing them to spew increasingly large quantities of deep mantle methane directly into the Arctic atmosphere. In the Late Permian, the massive volume of carbon dioxide released into the atmosphere during these cataclysmic eruptions produced extreme global warming in the air and oceans which also dissasocciated the Paleo-Arctic permafrost and subsea methane hydrates and the methane hydrate seals above the Enrico Pv Anomaly generating a massive seafloor and mantle methane pulse into the atmosphere that caused the Major Late Permian Extinction Event (Figures 2 to 4) (Wignall. 2009).

A sequence of extreme pyroclastic basaltic eruptions occur along the Gakkel Ridge (85oE volcanoes) which has an ultra - slow rate of plate spreading of 15 to 20 mm a year (Sohn et al. 2007). These volcanoes formed from the explosive eruption of gas - rich basaltic magmatic foams as shown by recovered green - glass fragments and pillow lavas. Long intervals between eruptions during slow spreading produced a huge gas and volatile buildup at high storage pressures deep down in the crust (Sohn et al 2007). A volatile and carbon dioxide content of some 13.5% to 14% (Wt./Wt. - volume fraction 75%) is necessary at 5 km depth in the Arctic Ocean to fragment the erupting magma (Sohn et al. 2007). These extreme pyroclastic basaltic volcanic eruptions are probably a modern day equivalent of the types of eruptions that occured in the region of methane eruption vents along the "Taimyr Volcanic Arc" in the Late Permian and totally fractured the mantle and crust producing deep reaching conduits that allowed mantle methane below 225 km access to the surface (Figure 4). The more fluid Gakkel Ridge pillow lava basalts mirror the very fluid Siberian "Trapp" flows that covered a large part of Siberia in the Late Permian (Figure 2 and 3).

Conclusions

Our present extreme fossil fuel driven, carbon dioxide global warming is predicted to produce exactly the same mantle methane release from the permafrost methane eruption vents along the Late Permian "TaimyrVolcanic Arc", subsea Arctic methane hydrates and the Enrico Pv Anomaly "Extreme Methane Emission Zone" by the 2050's, leading to total deglaciation and the extinction of all life on Earth.

Mankind has, in his infinite stupidity, with his extreme hydrocarbon addiction and fossil fuel induced global warming, opened a giant, long standing (Permian to Recent), geopressured, mantle methane pressure-release safety valve for methane gas generated between 100 km and 300 km depth and at temperatures of above 1200°C in the asthenosphere (Figures 1 to 6). This is now a region of massive methane emissions (Carana, 2011-2015).

There seems to be no fast and easy way to reseal this system. To sufficiently cool the Atmosphere and Arctic Ocean cannot be achieved in the short time frame we have left to complete the job. In some cases, it may be possible to reseal conduits with concrete or other material, or to capture methane for storage in hydrates at safer locations, but the sheer number of vulnerable locations and the size of the work involved is daunting.

Figure 9. Climate Action Plan, from Climate Plan
Other ways to deal with the methane are to break it down in the water and in the atmosphere, as also depicted in Figure 9 (enhanced decomposition). Efforts to break down methane in the atmosphere using radio-laser systems have been described by Light and Carana (Figure 8, Alamo and Lucy Projects, Light and Carana, 2012, 2013, Ehret 2012; Sternowski 2012; Iopscience, 2013, Arctic-news, 2012). Scientists at Georgia Tech. University have found in the ocean that at very low temperatures two symbiotic methane eating organisms group together, consume methane in the presence of tungsten and excrete carbon dioxide which then reacts with minerals in the water to form carbonate mounds (Glass et al. 2013). This means that the United States must fund a major project at Georgia Tech. to quickly develop the means to grow these methane consuming bacteria in massive quantities with their tungsten enzyme and find the means to deliver them to the Polar oceans as soon as possible. More generally, the situation calls for comprehensive and effective action, as discussed at the Climate Plan blog.


References

Aagaard K., Foldvik A., Hillman S.R., 1987. The West Spitsbergen Current: Disposition and Water Mass Transformation. Journal of Geophysical Research 92:3778 ACS 2013. Thermal Energy in the Ocean. ACS Climate Science toolkit/Oceans, Ice and Rocks. http://www.acs.org/content/acs/en/climatescience/oceanicerocks/thermalenergy.html

Allen P.A., and Allen J.R. 1990. Basin Analysis, Principles and Applications. Blackwell Scientific Publications, Oxford. 451 pp.

Anderson D.L., 1989. Theory of the Earth. Blackwell Scientific Publications. Boston 1-366 pp.

Anderson D.L., Minster B.J., and Cole D., 1974. The Effect of Oriented Cracks on Seismic Velocities. J. Geophys. Res. 79, 4011 - 4015.

Anderson D.L. and Whitcomb J. 1973. The dilatancy - diffusion model of earthquake prediction. In: Proceedings of the Conference on Tectonic Problems of the San Andreas Fault System.(A.M. Nur. ed.) 417 - 426. Stanford U. Publ. Geol. Sci. 13.

Anitei S. 2007. How is the Ozone layer menaced? The Daily Climate and Softpedia.
http://www.DailyClimate.org
http://news.softpedia.com/news/How-is-the-Ozone-Layer-Menaced-53762.shtml

Arctic Methane Emergency group (AMEG)
http://ameg.me

Baile L. W. and Braille S.W. 2002. Journey to the Centre of the Earth.
http://web.ics.purdu.ed/~braile/edumod/journey/journey.htm

Baker J.A., MacPherson C.G., Menzies M.A., Thirwall M.F., Al-Kadasi M., Mattey D.P., 1999. Resolving Crustal and Mantle Contributions to Continental Flood Volcanics in Yemen. Constraints from Mineral Oxygen Isotope Data. Jour. of Petrology, Vol 41, Issue 12, pp. 1805 - 1820

Balmaseda M.A., Trenberth K.E., Källén E., 2013. Distinctive climate signals in reanalysis of global ocean heat content. Geophysical Research Letters, Vol. 40, Issue 9, 1754 - 1759.

Bourke R.H., Wiegel A.M. and Paquette R.G. 1988. The westward turning branch of the West Spitsbergen Current. Jounal of Geophysical Research 93: 14065 - 14077

Box J. and Decker D. 2012. Greenland Ice Sheet Reflectivity , July 2000 – 2011, 2012 days 1 – 23. NASA MOD1OA1 data processed by Jason Bird and David Decker. Byrd Polar Research Centre.

Boyd T.J. D'asaro E.A., 1994. Cooling the West Spitsbergen Current: Wintertime Observations West of Svalbard. Journal of Geophysical Research 99:22587

Bryden, H.L., 1979. Poleward heat flux and conversion of available potential energy in
Drake Passage. J. Marine Res., 37, 1 - 22.

Bunker A.F. 1976. Computations of Surface Energy Flux and Annual Air-Sea Interaction Cycles of the North Atlantic Ocean. Mon. Wea. Rev. 104, 1122 - 1139.

Bunker A.F. 1988. Surface Energy Fluxes in the South Atlantic Ocean. Mon. Wea. Rev. 116, 809 - 829.

Bunker A.F., and Worthington V., 1976. Energy Exchange Charts of the North Atlantic Ocean. Bull. Amer. Meteor. Soc. 57, 670 - 678.

Cactus 2000; Wavelength. Unit Converters.
http://www.cactus2000.de/uk/unit/massway.shtml

Calder, N. 1984. Timescale - An Atlas of the Fourth Dimension. Chatto and Windus, London, 288 pp.

Carana, S. 2011. Potential for Methane Release.
http://arctic-news.blogspot.com/p/potential-for-methane-release

Carana, S. 2011a. Runaway Warming 2011. Geo-engineering blog.
http://geo-engineering.blogspot.com/2011/09/runaway-warming.html

Carana S., 2011b. Runaway global warming, 2011. Geo-engineering blog.
http://geo-engineering.blogspot.com/2011/04/runaway-global-warming.html

Carana, S. 2012a. Striking increase of methane in the Arctic. In: Arctic News.
http://arctic-news.blogspot.com/2012/05/striking-increase-of-methane-in-arctic.html

Carana S., 2012b. Record levels of greenhouse gases in the Arctic. Arctic News.
http://arctic-news.blogspot.com/2012/05/record-levels-of-greenhouse-gases-in.html

Carana S., 2012c. Greenland is melting at incredible rate. Arctic News.
http://arctic-news.blogspot.com/2012/07/greenland-is-melting-at-incredible-rate.html

Carana S., 2012d. Getting the picture. Arctic News.
http://arctic-news.blogspot.com/2012/08/getting-the-picture.html

Carana, S. 2012e. Oxygenating the Arctic
http://arctic-news.blogspot.com/p/oxygenating-arctic.html

Carana S., 2012f. The accumulating impact of methane releases in the Arctic and how much time there is left to act.
http://arctic-news.blogspot.com/p/how-much-time-is-there-left-to-act.html

Carana S., 2012g. How much time is there left to act? Abrupt release of 1 Gt of methane.
http://arctic-news.blogspot.com/p/how-much-time-is-there-left-to-act.html

Carana S., 2012h. Potential for Methane Release.
http://arctic-news.blogspot.com/p/potential-for-methane-release.html

Carana, S. 2012i. Runaway Warming. In: Arctic News
http://arctic-news.blogspot.com/p/runaway-warming.html

Carana S., 2013a. Quantifying Arctic Methane.
http://arctic-news.blogspot.com/2013/11/quantifying-arctic-methane.html

Carana S., 2013b. Methane - hydrates.
http://methane-hydrates.blogspot.com/2013/04/methane-hydrates.html

Carana S., 2013c. Methane up to 2241 ppb at 742 mb on January 23, 2013. In: Carana S., 2013, Dramatic increase in methane in the Arctic in January 2013.
http://arctic-news.blogspot.com/2013/02/dramatic-increase-in-methane-in-the-arctic-in-january-2013.html

Carana S., 2013d. Global warming, accelerated warming in the Arctic and runaway global warming. - How much will temperatures rise?.
http://arctic-news.blogspot.com/2013/04/how-much-will-temperatures-rise.html

Carana S., 2013e. Methane levels going through the roof.
http://arctic-news.blogspot.com/methane-levels-going-through-the-roof.html

Carana S., 2013f. Dramatic increase in methane in the Arctic in January 2013.
http://arctic-news.blogspot.com/dramatic-increase-in-methane-in-the-arctic-in-january-2013.html

Carana, S. 2013g Climate Action Plan, part of the Climate Plan
http://climateplan.blogspot.com/p/action.html

Carana S., 2014. Massive methane concentrations over the Laptev Sea.
http://arctic-news.blogspot.com/massive-methane-concentrations-over-the-laptev-sea.html

Carana, S. 2015 Methane Levels Early 2015
http://arctic-news.blogspot.com/2015/03/methane-levels-early-2015.html

CDL, 2013. The Oceans, their Physics, Chemistry and General Biology. UC Press E-Books Collection, 1982 - 2004. University of California Press. California Digital Library (CDL).
http://publishing.cdlib.org/ucpressebooks/view?docId=kt167nb66r&chunk.id=d3_5_ch15&toc.id=ch15&toc.depth=1&brand=eschol

Chao, B.F., Yu, Y.H., Li, Y.S., 2008. Impact of Artificial Reservoir Water Impoundment on Global Sea Level. Science, v. 320, p. 212 – 214.
http://www.skepticalscience.com/sea-level-rise.htm

Chapelle F.H.; O'Neill K., Bradley P.M., Methe B.A., Clufo S.A., Knobell L.L. and Lovely D.R. 2002. A hydrogen - based subsurface microbial community dominated by methanogens. Nature 415 (6869): 312 - 315. Bibcode: 2002. Nature 415. 312C.doi: 10.1038/415312a. PMID11797006.

Church J.A., White N.J., Konikow L.F., Domingues C.M., Cogley G., Rignot E., Gregory J.M., van den Broeke M.R., Monagham A.J., Velicogna I., 2011. Revisiting the Earth's sea - level and energy budgets from 1961 to 2008. Geophysical Research Letters. Vol. 40, Issue 15, 4066. Article first published online 8 Aug. 2013.

Church J.A., White N.J., Thorkild A., Wilson W.S., Woodworth, P.L. Domingues C.M., Hunter J.R., Lambeck K., 2008. Understanding global sea levels: past, present and future. Special Feature. Original Article. Sustain Sci. V.3, pp. 9 - 22.
http://academics.eckerd.edu/instructor/hastindw/MS1410_001_FA08/handouts/2008SLRSustain.pdf

Coachman L.K. and Barnes C.A., 1963. The movement of the Atlantic water in the Arctic Ocean. Arctic, 16(1); 9 - 16. Collett, T.S., 1995. Gas Hydrate Resources of the United States. In Gautier D.L. et al. eds. National assessment of United States oil and gas resources on CD-ROM. U.S. Geological Survey Digital Data Series 30.

Columbia, 2013. Subduction zones.
http://www.columbia.edu/~vjdi/subd_zone_basic.htm

Extent of the Siberian Trapps-ru.svg Kaidor - собственная работа based on File:Extent of Siberian traps german.png and File:Russland Relief.png
http://Commons.wikimedia.org (2015).

Connor, S. 2011. Shock as retreat of Arctic sea ice releases deadly greenhouse gas. Russian research team astonished after finding fountains of methane bubbling to surface. The Independent.
http://www.independent.co.uk/environment/climate-change/shock-as-retreat-of-arctic-sea-ice-releases-deadly-greenhouse-gas-6276134.html

Cook J. 2013. 4 Hiroshima bombs worth of heat per second. In: Skeptical Science.
http://www.skepticalscience.com/4-Hiroshima-bombs-worth-of-heat-per-second.html

CPOM, 2014. Cryosat finds sharp increase in Antarctica,s ice losses.
http://www.esa.int/Our-Activities/Observing_the_Earth/Cryosat/

Cryosat_finds_sharp_increase_in_Antarctica_s_ice_losses Csanady G.T., 2001. Air - Sea Interactions. Laws and Mechanisms. Cambridge University Press. 239 pp. DATAWeb, 2011. Combined Data Earth Policy Institute.
http://www.earth-policy.org/datacenter/.../update29_5x
http://www.earth-policy.org/datacenter/.../update20_3x

Dawson J.B. 1967. A review of the geology of kimberlite. In: Ultramafic and Related Rocks (Wyllie P.J., ed). Wiley, New York. 269 - 278

Diamond Stability Zone in the Earth. P-T Diagram.
http://geology.gsapubs.org/content/30/10/947/F3expansion.html

Dessus, B., and Laponche B., Herve le Treut, 2008. Global Warming: The Significance of Methane bd-bl-hlt January 2008.
http://www.global-chance.org/IMG/pdf/CH4march2008.pdf

Dmitrenko I.A., Polyakov I.V., Kirilov S.G., Timokhov L.A., Frolov I.E., Sokolov V.T., Simmons H.L., Ivanov V.V., et al. 2006. Toward a warmer Arctic Ocean: Spreading of the early 21st Atlantic Water warm anomaly along the Eurasian Basin margins. Journal of Geophysical Research 113: C05023

Dziewonski A.M., and Anderson D.L., 1981. Preliminary Reference Earth Model. Phys. Earth Planet. Inter. 25, 297 - 356

Edwards, M. H., Kurras, G. J., Toltsoy, M., Bohnenstiehl, D. R., Coakley, B. J., Cochran, J. R., 2001. Evidence of recent volcanic activity on the ultraslow – spreading Gakkel ridge. Letters to nature. Nature 409. no.6822, 808 – 812.
http://www.volcano.si.edu/world/volcano/cfm?vnum=1707-02-&volpage=var

Ehret G. 2010. Merlin: French – German Climate Satellite to be launched in 2014. Lidar Department, Institute of Atmospheric Physics, Deutches Zentrum für Luft – und Raumfahrt (DLR)
http://www.dlr.ge/pa/en/desktopdefault.aspx/tabid-2342/6725_read-26662/

Engineering Toolbox, 2011. Gases – Specific Gravities.
http://www.engineeringtoolbox.com/specific-gravities-gases-d_334.html

Fahrbach E., Meincke J., Osterhus S., Rohardt G., Schauer U., Tverberg V., Verduin J., 2001. Direct measurements of volume transports through Fram Strait. Polar Research 20(2), 217

Galt J.A. 1967. Current Measurements in the Canadian Basin of the Arctic Ocean, Summer, 1965. Technical Report No.184. Arctic Institute of North America. Office of Naval Research.
https://dlib.lib.washington.edu/dspace/bitstream/handle/1773/16076/M67-15.pdf?sequence=1

Gapminder, 2012. Yearly Human Carbon Dioxide Emissions
http://www.gapminder.org/world

Gaina C., Medvedev S., Torsvik T.H., Koulakov I., Werner S.C., 2013. 4D Arctic: A Glimpse into the Structure and Evolution of the Arctic. In the light of New Geophysical Maps, Plate Tectonics and Tomographic Models. Surv. Geophys. DOI.10.1007/s10712-013-9254-y.
http://earthdynamics.org/papers-ED/2013/2013-Gaina-etal-SurvGeophys.pdf

GEBCO (1979) and IBCAO (2000). Oblique view of the continental shelves of the Eastern Siberian and Laptev Seas.
http://www.ngdc.noaa.gov

Glasby G.P. 2006. Abiogenic origin of hydrocarbons: an historical review. PDF. Reservoir Geol. 56(1) 88 - 96.

Glass J.B. et al. 2013. Geochemical, metagenomic and metaproteomic insights into trace metal utilization by methane - oxidizing microbial consortia in sulfidic marine sediments. Environmental Microbiology 2013.
http://onlinelibrary.wiley.com/doi/10.1111/1162-2920.12314/abstract

Glass J.B. et al. 2013. Geochemical, metagenomic and metaproteomic insights into trace metal utilization by methane - oxidizing microbial consortia in sulfidic marine sediments. Environmental Microbiology 2013. In: Methane-Eating Microbes Need Trace Metal,
http://geo-engineering.blogspot.com/2013/12/methane-eating-microbes-need-trace-metal.html

Goho A., 2004. Deep Squeeze: Experiments Point to Methane in the Earth's Mantle. Science News.
https://www.sciencenews.org/article/deep-squeeze-experiments-point-methane-earths-mantle

Gusev E.A. 2013. The Structure of Gakkel Mid - Ocean Ridge and Laptev Sea Continental Margin Junction.
http://www.evgengusev.narod.ru/gakkel.html

Häkkinen S., and Cavalieri D.J., 1989. A study of oceanic surface heat fluxes in the Greenland, Norwegian and Barents Seas. J. Geophys. Res. 94, 6145 - 6157.

Halbouty M. 2001. Giant Oil and Gas Fields of the Decade (1990 - 1999). An Introduction:
http://www.searchanddiscovery.com/documents/halbouty03/index.htm

Hansen, J. E. 2011. GISS Surface Temperature Analysis. NASA. Goddard Institute for Space Physics.
http://data.giss.nasa.gov/cgibin/gistemp/do_nmap.py?year_last=2011&month_last=08&sat=4&sst=1&type=anoms&mean_gen=02&year1=2009&year2=2009&base1=1951&base2=1980&radius=1200&pol=pol

Hargraves, 2012. Altitudes of World Cities. Hargraves Advanced Fluidic Solutions.
http://www.hargravesfluidics.com

Harrison, J.C., St-Onge, M.R., Petrov, O., Streinikov, S., Lopatin, B., Wilson, F., Tella, S., Paul, D., Lynds, T., Shokalsky, S., Hults, C., Bergman, S., Jepsen, H. F. and Solli, A., 2008. Geological Map of the Arctic, Geological Survey of Canada, Open File 5816, Scale 1:1000,000. 5 Sheets. Arctic Map on Adobe Illustrator:
http://gscof-5816-e-2008-mn01.pdf

Haugan P. M., 1999. Structure and heat content of the West Spitzbergen Current. Polar Research 18 (2), 183

Heiklen, J. 1976. Atmospheric Chemistry. Academic Press, New York, 406 pp.

Hensel H. pers. com. 2014. Methane Ranges, 26th January, 2014. US Geological Survey, Google Earth.

Hensel H., 2014. Methane Rising Through Fractures.
http://arctic-news.blogspot.com/2014/07/methane-rising-through-fractures.html

Hillen, M.H., Jonkman, S.N., Kanning, W., Kok, M., Geldenhuys M., Vrijling J.K. and Stive, M.J.F., 2010. Coastal Defence Cost Estimates Case Study of the Netherlands, New Orleans and Vietnam. The Netherlands, TU Delft. Available from:
http://tiny.cc/wikh
http://repository.tudelft.nl/view/ir/uuid%3A604825d4-f218-40fc-b3b5-5f4280b2338d/

Holthaus E., 2015. Siberia's Permafrost is Exploding. Is Alaska's Next? Future Tense. The Citizens Guide to the Future.
http://www.slate.com/blogs.future_tense/2015/04/02/exploding_methane_holes_in_siberia_linked_to_climate_change April 2, 2015 2:53 pm

Höök M., Bardi U., Feng L., Pank X., 2010. Development of oil formation theories and their importance for peak oil. Marine and Petroleum Geology. Volume 27. Issue 9, October 2010, P. 1995 - 2004.
http://www.sciencedirect.com/science/article/pii/S0264817210001224
http://www.tsi.u.u.se/uhdsg/Publications/Abiotic_article.pdf

Hovland el al. 2006. Submarine pingoes: Indicators of shallow gas hydrates in a pock - mark at Nyegga, Norwegian Sea. Marine Geology, 228, 15 -23.
http://www.sciencedirect.com/science/article/pii/S0025322705003968

Huebner W.F. (Ed) 1990. Physics and Chemistry of Comets. Springer - Verlag. ISBN978-0-387-51228-0

Hutchinson J., 2014. Bond Energies in Polyatomic Molecules. General Chemistry.
http://www.vias.org/geochem/energetics_12592_05.html

Hyperphysics, 2013. Heat of Fusion, Heat of Vaporization.
http://hyperphysics.phy-astr.gsu.ed/hbase/thermo/phase2.html

Illingworth V. and Cullerne, J., 2000. The Penguin Dictionary of Physics, 3rd Edition. Market House Books Ltd. Clays Ltd. St Ives, 492 pp.

Intergovernmental Panel on Climate Change (IPCC) 1992a. Climate Change. The IPCC Scientific Assessment (Edited by J. J. Houghton, G. J. Jenkins and J. J. Ephraums). Cambridge University Press, Cambridge. U.K.

Intergovernmental Panel on Climate Change (IPCC) 1992b. Climate Change in 1992. The Supplementary report to the IPCC Scientific Assessment (Edited by J. J. Houghton, B. A. Callander and S. K. Varney). Cambridge University Press, Cambridge. U.K.

Intergovernmental Panel on Climate Change (IPCC) 2007a. Fourth Assessment Report on Climate Change 2007. FAO 3.1, Figure 1, WG1, Chapter 3, p. 253.
http://blogs.ei.colombia.edu/wp-content/uploads/2010/12/graph-2-600X422.jpg
http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-chapter3.pdf

Intergovernmental Panel on Climate Change (IPCC) 2007b. Synthesis Report
http://www.ipcc.ch/publications_and_data/ar4/syr/en/spms1.html

Intergovernmental Panel on Climate Change (IPCC) 2007b. Fourth Assessment report on Climate Change 2007 - temperature rise projections.
http://ipcc.ch/publications_and_data/ar4/wg1/en/spmsspm-projections-of.html

IPCC Fourth Assessment Report on Climate Change 2007 - temperature rise projections
http://ipcc.ch/publications_and_data/ar4/wg1/en/spmsspm-projections-of.html

Ivanov A.V., Demonterova, E.I., Rasskazov S.V., Yasnygina T.A. 2008. Low Ti melts from the South Eastern Siberian Traps - Large Igneous Province: Evidence for a Water - Rich Mantle Source?

J. Earth Syst. Sci. 117, No.1, pp. 1 - 21.
http://link.springer.com/article/10.1007%2Fs12040-008-0008-z
http://www.ias.ac.in/jessci/feb2008/doo47.pdf

Kennet, J.P., Cannariato, K.G., Hendy, I.L., Behl, R.J., 2003. Methane Hydrates in Quaternary Climate Change. The Clathrate Gun Hypothesis, Washington D.C., American Geophysical Union. ISBN 0875902960

Kenney J.K., Kutcherov V., Bendeliani N., and Alekseev V. 2002. The evolution of multicomponent systems at high pressure: VI. The thermodynamic stability of the hydrogen - carbon system. The genesis of hydrocarbons and the origin of petroleum. Proceedings of the National Academy of Sciences of the United States of America 99(17): 10976 - 10981.

Kestin J. et al. 1984. J. Phys. Chem. Ref. Data 13, 229.

Khain V.E., Geology of Northern Eurasia (Ex - USSR), 1994. Second part of the Geology of the USSR. Phanerozoic fold belts and young platform. Gebrüder Born Traeger. Berlin 404 pp.

Kholodov , A.I., Romanovskii N.K., Gavrilov A.V., Tipenko, G.S., Drachev S.S.,

Hubberten H.W., Kassens H., 1999. Modeling of the Offshore Permafrost Thickness on the Laptev Sea Shelf. Polarforschung 69, 221 - 227.

Krümmel D.O., 1891. Die Nordatlantische Sargasso Sea. Map. Scale 1:31300.000. Gotha: Justus Perthes.
http://www.gc.noaa.gov/images/gcil/1891_SargassoSee_Krummel_Petermanns_lores.jpg

Krupke W.W., 1986. Characteristics of Laser Sources. In: Handbook of Laser Science and Technology. Vol 1, Weber, M.J. Ed. CRC Press, Boca Raton, Florida. In:

Lide R., and Frederickse H.P.R., 1995. CRC Handbook of Chemistry and Physics. 75th Edition. 1-1 to 1-33.

Kvenvolden, K.A., 1988. Methane hydrate - a major reservoir of carbon in the shallow geosphere? - Chemical Geology, v. 71, pp. 41 -51.

Kvenvolden, K.A., 1988. Estimates of the methane content of world-wide gas-hydrate deposits - Methane resources in the Next Future? Panel Discussion. INOC-TRC, Japan, p. 1 - 8.

Kvenvolden, K.A., 1988. A primer on the geological occurence of gas hydrate. In: Henriet, J.P., and J Mienert (Eds.) Gas hydrates, relevance to world margin stability and climate change. Geological Society london. Spec. Pubs. 137, 9 - 30.

Kvenvolden, K.A., and Claypool, G.E., 1988. Gas hydrates in the oceanic sediment. In: U.S. Geol.Surv. Open - file Rep. No. 88 - 216, 50 pp.

Kvenvolden, K.A., Frank, T.J., Golan - Bac, M., 1990. Hydrocarbon gases in Tertiary and Quaternary sediments offshore Peru - results and comparisons. In: Proc. ODP: Sci. Results, 112, E. Suess and R. von Huene (Eds.). Ocean Drilling Program, College Station, Tx, pp. 505 - 516.

Kvenvolden, K.A., and Grantz, A., 1990. Gas hydrates of the Arctic Ocean region. In: The Geology of North America 50, The Arctic Ocean region. Geological Sciety of America, pp 539 - 549.

Kvenvolden, K.A. and Kastner, M., 1990. Gas hydrates of the Peruvian outer continental margin. In: Proc. ODP: Sci Results, 112, E. Suess and R. von Huene (Eds.). Ocean Drilling Program, College Station, Tx, pp. 517 - 526.

Kvenvolden, K.A., and Lorenson, T.D., 2001. The global occurence of natural gas hydrate. In: C.K. Paul and W.P. Dillon (Eds.). Natural Gas Hydrates. Occurence, distribution and detection, Geophysical Monograph 124, American Geophysical Union, p. 3 - 18.

Larousse F. and Auge C. 1968. Nouveau Petit Larousse en Couleurs Libraire, Larousse Paris, Georges Lang, Paris, 1662 pp.

Lavatus Prodeo 2012. Living in a 4C World.
http://Lavatusprodeo.net/archives/2010/08/16/living-in-a-4C-world

Lawver L.A., Dalziel I.W.D., Norton I.O., and Gahagan L.M., 2009. The Plates 2009 Atlas of Plate Reconstruction (750 Ma to Present Day). Plates Progress Report No. 325 - 0509. The University of Texas Technical Report. No. 196, p. 52.
http://www.ig.utexas.edu/research/projects/plates/250.htm

Lecture 5, 2014. Subduction Zones and Island Arcs.
http://www.ie.ac.uk/gl/art/g/209/lecture5/lecture5.html

Levitus et al. 2012. Global Ocean Heat Content. NOAA/NESDIS/NODS Ocean Climate Laboratory. Updated from Levitus et al. 2012. Global Oceanic Heat and Salt Content. In: NOAA National Oceanographic Data Center (NODS), United States Department of Commerce. http://www.nodc.noaa.gov/OCS/3M_HEAT_CONTENT/Index.html

Lide. D.R. and Frederikse H.P.R., 1995. CRC Handbook of Chemistry and Physics. 75th Edition, CRC Press, London. pp. 1-1 - 1-33.

Liesowska, A. 2015. Dozens of new craters suspected in northern Russia. The Siberian Times.
http://siberiantimes.com/science/casestudy/news/n0127-dozens-of-mysterious-new-craters-suspected-in-northern-russia 23 February 2015.

Light M.P.R. 2014. Mantle Methane. High Rate of Spreading of the Arctic Atmospheric Global Warming Veil South of the Gulf Coast is Driven by Deep Seated Methane Release from Giant Mantle Geopressured-Geothermal Reservoirs below the Siberian Craton at Depths of 100 km to 300 km and at Temperatures above 1200 Degrees Celsius.
http://arctic-news.blogspot.com/2014/02/mantle-methane.html

Light M.P.R. 2011b. Global Warming
http://globalwarming.mlight.blogspot.com

Light M.P.R., 2012. Global extinction within one human lifetime as a result of a spreading atmospheric Arctic methane heatwave and surface firestorm. Arctic-News.
http://arctic-news.blogspot.com/p/global-extinction-within-one-human.html

Light M.P.R., 2013. The Non - Disclosed Extreme Arctic Methane Threat. The 2013 Australian above average temperatures set a record of 0.22oC higher than the 12 month period prior to 2013 and confirm a mid - 21st century atmospheric methane - induced global deglaciation and major extinction event.
https://sites.google.com/site/runawayglobalwarming/the-non-disclosed-extreme-arctic-methane-threat

Light M.P.R. 2011a. Use of beamed interfering radio frequency transmissions to decompose Arctic atmospheric methane clouds. Edited by Sam Carana.
http://arctic-news.blogspot.com/p/decomposing-atmospheric-methane.html

Light M.P.R. 2011c. Stratospheric methane global warming veil. Edited by Sam Carana. In: Arctic News.
http://arctic-news.blogspot.com/p/stratospheric-methane-global-warming.html

Light M.P.R., 2012a. Global exctinction within one human lifetime as a result of a spreading atmospheric methane heatwave and surface firestorm. Edited by Sam Carana. In Arctic News.
http://arctic-news.blogspot.com/p/global-extinction-within-one-human.html

Light M.P.R., 2012b. How much time is there left to act, before methane hydrate releases will lead to human extinction? Edited by Sam Carana. In: Geo-Engineering.
http://geo-engineering.blogspot.com/2012/02/how-much-time-is-there-left-to-act.html

Light M.P.R. 2012c. Angels Proposal - A Proposal for the Prevention of Arctic Methane Induced Catastrophic Global Climate Change by Extraction of Methane from beneath the Permafrost/Arctic Methane Hydrates and its Storage and Sale as a Subsidized "Green Gas" Energy Source. LGS. 49 pp. In: Arctic News.
http://arctic-news.blogspot.com/2012/05/proposal-to-extract-store-and-sell.html

Light M.P.R. 2012. Further Confirmation of a Probable Arctic Sea Ice Loss by Late 2015. Edited by Sam Carana. In: Arctic News.
http://arctic-news.blogspot.com/2012/09/further-confirmation-of-a-probable-arctic-sea-ice-loss-by-late-2015-loss.html

Light, M.P.R. et al., 2011b. Methane linked to seismic activity in the Arctic
http://arctic-news.blogspot.com/p/seismic-activity.html

Light M.P.R. and Solana C., 2002a. Arctic methane hydrates - Mapping a potential greenhouse gas hazard. Abstract and Poster, EGS, Nice. - Appendix at:
http://arctic-news.blogspot.com/p/seismic-activity.html

Light, M.P.R. and Solana, C. , 2002b- Arctic Methane Hydrates: A Potential Greenhouse Gas Hazard
http://adsabs.harvard.edu/abs/2002EGSGA..27.4077L

Light, M.P.R., Posey, H.H., Kyle, J.R., and Price P.E., 1987. Model for the origins of geopressured brines, hydrocarbons, caprocks and metallic mineral deposits; Gulf Coast, U.S.A., In: Lerch, Ian and O'Brien, J.J., Dynamical geology of salt and related structures: Orlando, Florida, Academic Press, pp. 787 - 830.

Light M.P.R., 1985. Structure, facies, continuity and internal properties of the Frio "A" sandstone, N.E. Hitchcock Field, Galveston County, Texas. In: Dorfman, M.H., and Morton R.A., eds., Geopressured - Geothermal Energy, Proceedings of the Sixth U.S. Gulf Coast Geopressured - Geothermal Energy Conference Pergamon, p. 229 - 238.

Li Z., Guo Z., Bai Z., Lin G., 2004. Geochemistry and Tectonic Environment and Reservoir Formation of Mantle - Derived Natural Gas in the Songiliao Basin, Northeastern China. Geotectonica et Metallogenia

Liu B., Wang B.S., Ji W.G., Kern H., Popp T., 2001. Closure of Micro - Cracks in Rock Samples under Confining Pressure. Chinese Journal of Geophysics. Vol 44, No. 3, 2001.
http://www.agu.org/WPS/cig/44/44.03/articles/440316.pdf

LIP, 2013. October 2013 LIP of the Month (Large Igneous Provinces).
http://www.largeigneousprovinces.org

Lopatin, N.V. 1971. Temperature and geologic time as factors in coalification (in Russian). Akad. Nauk SSSR. Izvestiya. Seriya Geologicheskaya, 3, pp.95 - 106.

MacDonald G.J., 1988. Major Questions about Deep Continental Structures. In: A. Bodeń K.G., Eriksson. Deep Drilling in Crystalline Bedrock, v.1. Berlin: Springer Verlag. pp. 28 -48. ISBN 3 -540 - 18995 - 5. Proceedings of the Third International Symposium on Observation of the Continental Crust through Drilling held in Mora and Orso, Sweden, September 7 - 10, 1987.

Manley T.O. 1995. Branching of the Atlantic Water within the Greenland-Spitsbergen Passage. An estimate of recirculation. Journal of Geophysical Research 100: 20627

Marreo T.R. and Mason E. A. 1972. J. Phys. Chem. Ref. Data 1, 1.

Masters. J. 2009. Top Climate Story of 2008. Arctic Sea Ice Loss. Dr Jeff Masters Wunderblog.
http://www.wunderground.com/blog/JeffMasters/comment.html?entrynum=1177

Max, M.D., and Lowrie, A., 1993. Natural gas hydrates, Arctic and North Sea potential. In Vorren, T.O., Bergsager, E., Dahl-Stamnes, A., Holter, E., Johansen, B., lie, e., and Lund, T.B.. Arctic Geology and Petroleum Potential, Proceedings of the Norwegian Petroleum society Conference, 15 - 17 august 1990, tromso, Norway, Norwegian Petroleum Society (NPF), Special Publication 2, Elsevier, Amsterdam, 27 -53.

Merk J. 2012. CPSP118G Spring Semester SGC Colloquim. Climate and How it Works I. Physical Components. University of Maryland.
http://www.geol.umd.edu/sgc/lectures/climatepart1.html

Merali Z., 2004. Earth's Mantle can Generate Methane. Nature. doi:10.1038/news040913-5.
http://www.nature.com/news/2004/040913/fullnews040913-5.html

Mineral Commodities Survey - Helium. January 2011, USGS.
http://minerals/pubs/commodity/helium/mcs-2011-heliu.pdf

MIT. 2012. Mission 2011. Saving the Oceans. Climate Change
http://web.mit.edu/12.000/www/M2011/finalwebsite/solutions/climate.shtml

Mitura, S., Mitura, K., Niedzielski, P., Louda R., Danilenko, V., 2006. Nanocrystalline diamond, its synthesis, properties and applications. Journal of Achievements in Materials and Manufacturing Engineering, Vol 16, Issue 1-2, pp 9 -16.
http://journalamme.org/papers_cams05/1244.pdf

Morgan W. J. 1981. Hot Spot tracks and the opening of the Atlantic and Indian oceans. In C. Emiliani (Ed.) The Oceanic Lithosphere. Wiley, New York. pp. 443 - 487.

Morrison 2012. Sea Ice Death Spiral Driving Atlantic Water into Arctic Causing Wild Weather. Get Energy Smart! Now. Blogging for a Sustainable Energy Future.
http://getenergysmartnow.com/2012/01/20/sea-ice-death-spiral-driving-atlantic-water-into-arctic-causing-wild-weather/

Murphy D.M., Solomon S., Portmann R.W., Rosenlof K.H., Forster P.M., Wong T., 2009. An obervationally based energy balance for the Earth since 1950. Journal of Geophysical Research: Atmospheres (1984 - 2012), Vol. 114, Issue D17, 16 September 2009.

NASA global temperature data
http://data.giss.nasa.gov/gistemp/tabledata_v3/GLB.Ts.txt

NASA, 2002. Global Temperature Anomalies in 0.1C. Goddard Institute for Space Studies., NASA Goddard Space Flight Center, Earth Sciences Directorate.
http://www.giss.nasa.gov/data, updated December 2002

NASA, 2007. "Methane Blast" NASA, May 4, 2007. Test firing of a 7,500 pound thrust LOX/methane engine. Image credit Mike Masseea Aerospace.
http://Science.nasa.gov/science-at-nasa/2007/04may-methaneblast/

NASA, 2012. Atmospheric methane levels. AIRS 2006 - 2009 annual mean upper troposphere (359 Hpa) methane concentration (ppm).
http://daac.gsfc.nasa.gov/giovanni/

NASA, 2011, GISS surface temperature data. SBBX.Tsurf250, (18.9MB) suf air temp (1880-present) 250km smoothing.
ftp://data.giss.nasa.gov/pub/gistemp/download/

NASA, 2012. Global temperature data.
http://data.giss.nasa.gov/gistemp/tabledata_v3/GLB.Ts.txt

Nassar, R., Bernath P.F., Boone, C.D., Manny, G.L., McLeod, S.D., Rinsland, C.P., Skelton, R., Walker, K.A., 2005. Stratospheric abundances of water and methane based on ACE-FTS measurements. geophysical Research Letters, Vol.32, L15504, 5 pp.
http://www/.atmosp.physics.utoronto.ca/~massar/Publications_pdfs/Nassar_water_methane_2005GL022383.pdf

Nataf H.C., Nakanishi I., Anderson D.L., 1986. Measurements of mantle wave velocities and inversion\ for lateral heterogeneities and anisotropy. Part III. Inversion. J. Geophys. Res., 91, 7261 - 7307.

National Snow and Ice Data center (NSIDC), 2011a. The Polar Vortex.
http://nsidc.org/

http://arcticmet/patterns/polar_vortex.html

National Snow and Ice Data center (NSIDC), 2011b. Arctic Climatology and Meteorology,
http://nsidc.org/articmet/factors/winds.html

Naumer T., 2012. Triggering permafrost meltdown is closer than we think.
http://Climatechangepsychology.blogspot.com.es/2012/04/triggering-permafrost-meltdown-
is.html

Neven, 2011. Arctic Sea Ice Blog. Interesting News and Data;
http://neven1.typepad.com/blog/2011/09/piomas-august-2011.html

NOAA 2011a. Huge sudden atmospheric methane spike Arctic Svalbard (north of - Norway)
http://arctic-news.blogspot.com/p/need-for-geo-engineering.html

NOAA 2011b. Huge sudden methane spike recorded at Barrow (BRW), Alaska, United States. Generated ESRL/GMO – 2011. December 14-17-21 pm
http://arctic-news.blogspot.com/p/need-for-geo-engineering.html

NOAA ESRL (2012). Atmospheric Carbon Dioxide Levels, 2009. NOAA ESRL data.
ftp:ftp.cmdl.noaa.gov/ccg/co2/trends/co2_annmean_mlo.txt

NOAA, 1999. Paleoclimatology Program. International Ice Core Data Cooperative.
Vostok Ice Core Data.
http://www.ngdc.noaa.gov/palaeo/icecore/antarctica/vostok/vostok.html

NSIDC 2011a. The Polar Vortex. National Snow and Ice Data Center,
http://nsidc.org/

http://arcticmet/patterns/polar_vortex.html

Norwegian Polar Institute, 2001. Svalbard, Climate:
http://www.npolar.no/en/the-arctic/svalbard/

Nuccitelli D., Way R., Painting R., Church J., Cook J., 2012. Comment on "ocean heat content and Earth's radiation imbalance.II Relation to climate shifts". Physics Letters A. Vol. 376, Issue 45, 1 October 2012, 3466 - 3468.

Olivier, C.P., 1942. Long Enduring Meteor Trains. Proc. Amer. phil. Soc. 35. p.93

Olivier, C.P., 1948. long Enduring Meteor Trains. Proc. Amer. Phil. Soc. 91, p. 315
(second paper).

Parry, M.L., Canziani, O.F., Palutikof, J.P. and Co-authors, 2007. Impacts, Adaption and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. van der Linden and C.E. Hanson, Eds. Cambridge University Press, Cambridge, UK, pp. 23 – 78.

Paull et al. 2007. Origin of pingo-like features on the Beaufort Sea Shelf and their possible relationship to decomposing methane hydrates. Geophysical Research Letters 34, L01603. http://www.agu.org/pobs/crossref/2007/2006GL027977.shtml

Pravettoni, R., 2009. WWF Arctic Feedbacks Report. UNEP.GRID Arendal.
http://www.grida.no/graphicslib/detail/annual-temperatures-increases-for-2001-2005-relative-to-1951-1980-6beo

Perkin R.G. and Lewis F.I. 1984. Mixing in the West Spitsbergen Current. Journal of Physical Oceanography 14 (8), 1315

Peterson J.B., Helium USGS.
http://minerals.usgs.gov/minerals/pubs/commodity/helium/330495.pdf

Petrology (2013). Composition of the Lithospheric mantle. Location map of Udachnaya Kimberlite Fields.
http://petrology.oxfordjournals.org

Reynold N. 2012. Methane hydrate technology fuels a new energy regime.
http://www.methanehydrate.org

Rice D., 2012. Arctic Sea Ice at Lowest Level on Record. Sci-Tech Today. Environment.
http://www.sci-tech-today.com/story.xhtml?story_id=130007AH6NIG

http://www.methanehydrates.org

Rianovosti, 2011. Russian, US scientists set to study methane release in Arctic. ScienceRSS
http://en.rian.ru/science/20110902/166364635.html

Robertscribbler, 2014. Methane monster finding cracks in the Earth's defenses. Is the global methane sink starting to fade.
http://robertscribbler.wordpress.com/2014/04/18/methane-monster-finding-cracks-in-earths-defenses-is-the-global-methane-sink-starting-to-fade

Robertscribbler, 2015. Siberian Methane Crater Locations. In total, 7 methane blow holes with features similar to the Yamal Crater have been discovered.
http://robertscribbler.wordpress.com

Romm J. 2012. Why the Arctic Sea Ice Death Spiral Matters. Think Progress - Climate Progress.
http://thinkprogress.org/climate/2012/08/26/745571/why-the-arctic-sea-ice-death-spiral-matters


Rutgers, 2013a. Atlantic Ocean Gyre Map.
http://www.i-cool.org/wp-content/uploads/2010/02/ce058700fg0010.gif

Rutgers, 2013b. South Atlantic Gyre. I-Cool. International Coalition of Ocean Observing Laboratories.
http://www.i-cool.org/?p=4916

Saldo R. 2012. AIRS data. DTU Space, Technical University of Denmark.
http://www.seaice.dk

Saloranta T.M., Svendsen H. 2001. Across the Arctic front west of Spitsbergen. High-
resolution CTD sections from 1998 - 2000. Polar Research 20 (2). 177. 1751 - 8369.

Science Daily, 2011. Record Depletion of Arctic Ozone Layer Causing Increased UV Radiation in Scandinavia.
http://www.sciencedaily.com/releases/2011/04/110405102202.htm

Scientific American, 2012. Hurricane Sandy: An Unprecidented Disaster.
http://www.scientificamerican.com/report.cfm?id=hurricane-sandy-2012

Scott H.P., Hemley R.J., , Mao H.K., Herschbach D.R., Fried L.E., Howard W.M., Bastea H.S., Generation of Methane in the Earth's Mantle. In situ high pressure - temperature mantle measurements of carbonate reduction. PNAS vol. 101, no. 29. pp 14023 - 14026
http://www.pnas.org/content/101/39/14093.full

Sekretov S.H. 1988. Correction. Petroleum Potential of Laptev Sea Basins. Geological, Tectonic and Geodynamic Factors:In: Polarforschung 68. Tessensohn F., Roland N.W., (eds) ICAMIII. International Conference on Arctic Margins. Celle (Germany). 12 - 16 October, 1998. pp 179 - 186.

Semiletov, I. 2011. Quoted from Itar-Tass. Heavy methane emissions found in the Arctic Eastern Sector. Itar-Tass. September 26, 2011.
http://www.itar-tass.com/en/c154/233799.html

Shakel M., 2005. Sustainability: Our Environment.
http://www.earthethicsinstitute.org/facultycurriculum-pdf/sustainability%20exploration20in%Mathematics.pdf

Shakhova N., 2013. A thawing ocean floor pours methane into the atmosphere and it's only getting worse. PRI. Science. Tech and Environment.
http://www.pri.org/stories/2013-12-12/thawing-ocean-floor-pours-methane-atmosphere-and-its-only-getting-worse

Shakhova N., Semiletov, I., Salyuk, A., and Kosmach, D., 2008. Anomalies of methane in the atmosphere over the East Siberian Shelf. Is there any sign of methane leakage from shallow shelf hydrates? EGU General Assembly 2008. Geophysical Research Abstracts, 10, EGU2008-A-01526
http://www.cosis.net/abstracts/EGU2008/01526/EGU2008-A-01526.pdf

Shakhova, N. and Semiletov, I., 2010a. Methane release from the East Siberian Shelf and the potential for abrupt climate change. Presentation in November 30, 2010.
http://symposium2010.serdp-estcp.org/Technical-Sessions/1A

Shakhova N., Semiletov, I., Leifer, I., Salyuk, A., Rekant, P., and Kosmach, D. 2010b. Geochemical and geophysical evidence of methane release over the East Siberian Arctic Shelf. Journal Geophys. Research 115, C08007
http://europa.agu.org/?view=article&uri=/journals/jc/jc1008/2009jcoo5602/2009jc005602.xml

Shakhova, N., Semiletov, I., Salyuk, A., Yusupov, V., Kosmach, D., and Gustafsson, O., 2010c. Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf. Science.
http://www.sciencemag.org/content/327/5970/1246.short

Sloan, E.D., 1998. Clathrate hydrates of natural gas. 2nd ed., Marcel Dekker, New York, 705 pp.

Smithson S.B., Wenzel F., Ganchin Y.V., Morozov I.B., 2000. Seismic results at Kola and K.T.B. deep scientific boreholes; velocities, reflections, fluids and crustal composition. Tectonophysics 329 (1-4), 301 - 307. Bibcode. 2000 Tectp 329. 3015. doi; 10. 1016/50040 - 1951 (00)00200-6.

Sohn R.A., et al. 2007. Explosive volcanism on the ultraslow - spreading Gakkel Ridge, Arctic Ocean.
https://darchive.mblwhoilibrary.org/bitstream/handle/1912/2636/2007-12-13258A_text.pdf?sequence=1

Solana, C., and Light, M.P.R., 2002. Can we turn a hazard into a development tool. The case of methane hydrates in the permafrost. Abstract and Poster. EGS, Nice.

Speer K. 2012. How ocean currents affect global climate is a question oceanographers may be close to awnsering. Florida State University.
http://www.eurekalert.org/pub_releases/2012-08/fsu-hoc082612.php

http://www.methanehydrates.org

Sternowski, R.H., 2012. Lecture 7. Softronics ltd.
http://www.softronicsltd.com

Stroeve, J.E., Serreze, M.C., Holland, M.M., Kay, J.E., Malanik, J., and Barret, 2012. The Arctics rapidly shrinking sea ice cover: a research synthesis. Clim. Change. 110, (4.- Mar), p. 1005 - 1027.

Sverdrup, Johnson and Fleming, 1942. In; introduction to Physical Oceanography.
http://oceanworld.tamu.edu/resources/ocng_textbook/chapter 11/chapter11_04.htm
publishing.cdlib.org/ucpressebooks/view?docId=kt167nb66r&doc.view=popup&fig.
ent=http://publishing.cdlib.org/ucpressebooks/data/13030/6r/kt167nb66r/figures/kt167nb66r_fig187.gif

Table 1. (P - T conditions in) Journey to the Center of the Earth.
http://web.ics.purdue.edu/~braile/edumod/journey/journey.htm

Tharp. M., and Frankel, H., 1986. In: Natural History, October 1986. North American Museum of Natural History, p. 1 – 6.
http://www.google.com/url?.sa=t&rt

Thomson L.A., 1988. Elastic Anisotropy due to Aligned Cracks. Geophysics.

Trenberth K., 2014. Deep ocean warming is coming back to haunt us: Record Warmth for 2014 likely as Equatorial Heat Rises.
http://robertscribbler.wordpress.com/2014/05/16/deep-ocean-warming-is-coming-back-to-haunt-us-record-warmth-for-2014

Tschudi, M.A., Stroeve, D.K., Perovich, D.K., and Maslanik, J.A., 2012. Arctic Sea Ice Melt Pond Coverage Derived from Modis and from High Resolution Satellite Imagery. Remote Sensing of the Environment. NSIDC.
http://cires.colorado.edu/websites/nsidc/Publications/publications.php?id=366

Tupolev, 2013. Tu - 155 built to use cyrogenic fuel.
http://www.Tupolev.ru/English/Picture.asp?PubID=1788

University of Washington 2000. "North pole Hydrography 1991 - 2000 compared with EWG Atlas Climatology". EWG Atlas 1950's. Oden 1991. Scicex 1993-1999. North Pole Environmental Observatory 2000. Cast 18.

Velard G. 2006. Inertial Confinement Nuclear Fusion: A Historical Approach by Pioneers. Lawrence Livermore Laboratory Report. UCRL-Book-218579

Vizcarra N. 2012. Arctic Sea Ice Reaches Lowest Extent Ever Recorded. University of Colorado CU- Boulder Research Team.
http://www.eurekalert.org/pub_releases/2012-08/uoca-asi082712.php

Wales J., 2013. 2014.

Wikipedia; Topography of the Arctic Ocean
http://en.wikimedia.org/wikipedia/commons/d/d5/IBCAO_betamap.jpg

Wikipedia, Carbon Dioxide.
http://en.wikipedia.org/wiki/Carbon_dioxide

Wikipedia, Climate of the Arctic.
http://en.wikipedia.org/wiki/climate_of_the_Arctic

Wikipedia; Columbia River Basalt Group
http://en.wikipedia.org/wiki/Columbia_River_Basalt_Group

Wikipedia, Current Sea Level Rise.
http://en.wikipedia.org/wiki/Current_sea_level_rise

Wikipedia, Density of Air.
http://en.wikipedia.org/wiki/Density_of_air

Wikipedia.,2012. Enthalpy of Fusion.
http://en.wikipedia.org/wiki/Enthalpy_of_fusion

Wikipedia; Gakkel Ridge
http://en.wikipedia.org/wiki/Gakkel_Ridge

Wikipedia, Global Warming.
http://en.wikipedia.org/wiki/Global_warming

Wikipedia; Gulf Stream.
http://en.wikipedia.org/wiki/File:Golfstrom.jpg

Wikipedia, Iceberg.
http://en.wikipedia.org/wiki/Iceberg

Wikipedia, Indian Summer.
http://en.wikipedia.org/wiki/Indian_summer

Wikipedia, Jason-1.
http://en.wikipedia.org/wiki/jason-1

Wikipedia; Methane.
http://en.wikipedia.org/wiki/Methane

Wikipedia, Natural Gas.
http://en.wikipedia.org/wiki/Natural_Gas

Wikipedia, North Sea.
http://en.wikipedia.org/wiki/North_Sea

Wikipedia: Schematic Mid-Ocean Ridge
http://upload.wikipedia.org/wikimedia/commons/b/b8/

Wikipedia; South Atlantic Gyre
http://en.wikipedia.org/wiki/File:South_Atlantic_Gyre.png

Wikipedia; West Spitsbergen Current
http://en.wikipedia.org/wiki/West-Spitsbergen-Current

Wikipedia; Sverdrup
http://en.wikipedia.org/wiki/Sverdrup

Weatheronline, 2013.
http://www.weatheronline-co.uk/reports/wxfacts/North-Atlantic-Drift-Gulf-Stream.htm

Westbrook G.K., Thatcher K.E., Rohling E.J., Pitrowski A.M., Palike, H., Osborne A.H., Nisbet E.G., Minshuli, T.A. et al. 2009. Escape of methane gas from the seabed along the West Spitsbergen continental margin. Geophysical Research Letters 36 (15). L15608.

Whitcomb J.H., Garmany J.D., and Anderson D.L., 1973. Earthquake prediction. Variation of seismic velocities before the San Francisco earthquake, 180, 632 - 635.

Whiticar M.J., 1994. Correlation of Natural Gases and their Sources. Chapter 16, Part IV. Identification and Characterisation, AAPG Special Volumes. Volume M60. The Petroleum System - From Source to Trap. pp 261 - 283.

Wignall P. 2009. Miracle Planet: Episode 4, Part 2. Coproduced by NHK (Japan) and the National Film Board of Canada (NFB).
http://www.youtube.com/watch?v=exfNNDExxic&list=PL0200B1S24E220C5A&feature=playerembedded#!

Windley B.F., 1986. The Evolving Continents. 2nd Edition. John Windley and Sons. 399pp.

Winkler H.G.F., 1976. Petrogenesis of Metamorphic Rocks. Fourth Edidtion. Springer - Verlag, New York, 334 pp.

Wofsy, S.C. et al. 2009. (image: HIPPO-1 flight along the date line, January 2009) HIAPER Pole-to-Pole Observations (HIPPO): fine-grained, global-scale measurements of climatically important atmospheric gases and aerosols Phil. Trans. R. Soc. A (2011) 369, 2073–2086 doi:10.1098/rsta.2010.0313
http://rsta.royalsocietypublishing.org/content/369/1943/2073.full.html

Yakovlev A.V., Bushenkova N.A., Koulakov I. Yu., Dobretsov N.L., 2012. Structure of the upper mantle in the Circum - Pacific region from regional seismic tomography. Science Direct. Russian Geology and Geophysics 53, 963 - 971.
http://www.ivan.art.com/sciences/PAPERS/2012_arctic.pdf

Yirka B. 2012. New research explains how diamond rich kimberlite makes its way to Earth's surface. Phys Org.
http://phys.org/news/2012-01-diamond-rich-kimberlite-earth-surface.html

Yurganov, L., 2012a. Atmospheric Infrared Sounder (AIRS) data from NASA's Aqua Satellite. Index of/pub/yurganov/methane/MAPS/
ftp://asl.umbc.edu/yurganov/methane/MAPS/

Yurganov, L., 2012b. Atmospheric Infrared Sounder (AIRS) data from NASA's Aqua Satellite.
ftp://asl.umbc.edu/pub/yurganov/methane/AIRS_CH4%20_2002-2012.jpg

Zhang J. and Rothrock D.A. 2012. Arctic Sea Ice Volume Anomaly, Version 2. Polar Science Center, Applied Physics Laboratory, University of Washington.
http://psc.apl.washington.edu./wordpress/research/projects/arctic-sea-ice-volume-anomaly/

Zhang J. and Rothrock D.A. 2003.. Modelling global sea ice with a thickness and enthalpy distribution model in generalized curvilinear co-ordinates. Mon.Wea.Rev., 131(5), 681 - 697.

Zonenshain L.P., Kuzmin M.I., and Natapov L.M., 1990. Geology of the USSR. A Plate Tectonic Synthesis. AGU Geodynam. Ser. Monogr. 21

Zuppero A., US. Department of Energy, Idaho National Engineering Laboratory - Discovery of Water Ice Nearly Everywhere in the Solar System.

Zwart H.J. and Dornsiepen U.F. 1980. The Variscan and pre - Variscan tectonic evolution of the Central and Western Europe: a Tentative Model. In J. Cogne and M. Slansky (Eds), Geology of Europe. B.R.G.M. Orleans. France. pp 226 - 232.


Figure References

Figure 7. Enhanced Lucy Transmission System. Image from Light and Carana 2012. Lidar methane detecting laser from Ehret, 2012. Methane heating laser from Sternowski, 2012. Hydroxyl formation from iopscience.iop.org, 2013.


North Siberian Arctic Permafrost Methane Eruption Vents | by Malcolm Light, Harold Hensel and Sam Caranahttp://arctic-news.blogspot.com/2015/04/north-siberian-arctic-permafrost-methane-eruption-vents.html

Posted by Sam Carana on Friday, April 10, 2015