Showing posts with label ocean. Show all posts
Showing posts with label ocean. Show all posts

Tuesday 22 September 2015

Arctic Sea Ice 2015 - Update 10

It looks like sea ice has passed its minimum extent for the year 2015, as illustrated by the image below.


There are some differences between the various websites measuring extent, such as to whether the 2015 low was the third or fourth lowest. Japanese measurements show that sea ice extent was 4.26 million square km on September 14, 2015, i.e. lower than the 2011 minimum of 4.27 million square km, as illustrated by the image below.


Meanwhile, the Polar Science Center at the University of Washington has announced that Arctic sea ice volume minimum was reached on September 12, 2015, with a total volume of 5,670 cubic km. The image below shows a polynomial trendline based on their annual Arctic sea ice volume minima, including this volume for 2015.


Importantly, the sea ice in many places is now less thick than it was in 2012, as illustrated by the image below, showing sea ice thickness on September 27, 2012 (panel left) and a forecast for September 27, 2015 (panel right).


The reason for the dramatic decrease in thickness of the multi-year sea ice is ocean heat, as illustrated by the image below, showing sea surface temperature anomalies in the Arctic as at September 21, 2015.


The water of the Arctic Ocean is very warm, not only at the surface, but even more so underneath the surface. What has contributed to this situation is described by the image below. From 2012, huge amounts of fresh water have run off Greenland, with the accumulated fresh water now covering a huge part of the North Atlantic.

Since it's fresh water that is now covering a large part of the surface of the North Atlantic, it will not easily sink in the very salty water that was already there. The water in the North Atlantic was very salty due to the high evaporation, which was in turn due to high temperatures and strong winds and currents. As said, fresh water tends to stay on top of more salty water, even though the temperature of the fresh water is low, which makes this water more dense. The result of this stratification is less evaporation in the North Atlantic, and less transfer of ocean heat to the atmosphere, and thus lower air temperatures than would have been the case without this colder surface water.


Meanwhile, global warming continues to heat up the oceans, while less of this ocean heat can now be transferred from the water to the atmosphere in the North Atlantic, since the fresh water is acting like a lid.

The danger is thus that warmer water will be pushed into the Arctic Ocean at lower depth, and that it will reach the seafloor of the Arctic Ocean where huge amounts of methane are contained in sediments. Ice acts like a glue, holding these sediments together and preventing destabilization of methane hydrates. Warmer water reaching these sediments can penetrate them by traveling down cracks and fractures in the sediments, and reach the hydrates.

The big melt in Greenland and the Arctic in general is causing further problems. Isostatic adjustment following melting can contribute to seismic events such as earthquakes, shockwaves and landslides that can destabilize methane hydrates contained in sediments on the Arctic Ocean seafloor.

In the video below, by Nick Breeze, Professor Peter Wadhams discusses the situation.



The situation is dire and calls for comprehensive and effective action as discussed at the Climate Plan.


The water of the Arctic Ocean is very warm, not only at the surface, but even more so underneath the surface. What has...
Posted by Sam Carana on Tuesday, September 22, 2015

Sunday 20 September 2015

August 2015 Had Highest Sea Surface Temperature on Record

Across the oceans, the August 2015 globally-averaged sea surface temperature was 0.78°C (1.40°F) above the 20th century average—the highest temperature for any month in the 1880–2015 record. NOAA analysis further shows that in August 2015, the sea surface on the Northern Hemisphere was 1.02°C (1.84°F) warmer than it was in the 20th century, as illustrated by the graph below.


As the image below shows, the August data for sea surface temperature anomalies on the Northern Hemisphere contain a trendline pointing at a rise of 2°C (3.6°F) well before the year 2030. In other words, if this trend continues, the Northern Hemisphere sea surface will be 2°C (3.6°F) warmer in about a dozen years time from now.


Such a temperature rise would be catastrophic, as there are huge amounts of methane contained in the form of hydrates and free gas in sediments under the Arctic Ocean seafloor. A relatively small temperature rise of part of these sediments could cause a huge abrupt methane eruption, further speeding up local warming and triggering further methane eruptions, in a spiral of runaway warming that will cause mass destruction and extinction, as described in the reference page The Mechanism.

The situation is dire and calls for comprehensive and effective action, as discussed at the Climate Plan page.


August data for sea surface temperature anomalies on the Northern Hemisphere contain a trendline pointing at a rise of 2...

Posted by Sam Carana on Sunday, September 20, 2015

Thursday 10 September 2015

3.27°C warmer by 2030?

Will it be 3.27°C warmer by the year 2030?
In December 2015, world delegates will descend on Paris to ensure that global warming will not cross the guardrail of 2°C above pre-industrial levels.

[ click on images to enlarge them ]
In a way, we have already crossed this guardrail. NOAA data show that the year-to-date land surface temperature was 1.47°C above the 20th century average on the Northern Hemisphere in 2015, as illustrated by the image on the right.

Granted, there was less warming on the Southern Hemisphere, so the globally-averaged land surface temperature was a little bit lower, i.e. 1.34°C above the 20th century average. For reference, the image below on the right gives an overview of mean 1901-2000 temperatures. Anyway, the difference between hemispheres is small and not very relevant since most people live on the Northern Hemisphere.

[ click on image to enlarge ]
More importantly, this 1.47°C rise is a rise compared to the 20th century average. The 20th century average was some 0.60°C higher than temperatures were at the start of the NOAA record in 1880. In other words, temperatures for most people on Earth are already 2.07°C higher than they were in 1880.

Furthermore, between 1750 and 1880 the global average temperature had already increased by some 0.20°C.

Sure, 2015 is an El Niño year, but this El Niño is still strengthening, so 2016 could well be even warmer. Moreover, recent temperatures are in line with expectations of a polynomial trendline that is based on these NOAA data and that points at yet another degree Celsius rise by 2030, on top of the current level, as illustrated by the top image. Altogether, this would make it 3.27°C warmer than in 1750 for most people on Earth by the year 2030.

So, instead of acting as if dangerous global warming could possibly eventuate beyond the year 2100, delegates in Paris should commit to lowering temperatures, starting now.

To lower temperatures, cutting emissions alone will not be enough.

Stopping all emissions by people would make that the aerosols that are currently sent up in the air by burning fuel and that are currently masking the full impact of global warming, will fall out of the air in a matter of weeks. Until now, about half of the global temperature rise is suppressed by such aerosols. Stopping aerosols release overnight could make temperatures rise abruptly by 1.20°C in a matter of weeks.

Furthermore, carbon dioxide that is emitted now will take ten years to reach its peak impact, so we're still awaiting the full wrath of carbon dioxide emitted over the past decade.

A recent study calculates that global mean surface temperature may increase by 0.50°C after carbon emissions are stopped, and they will decrease only minimally from that level for the next 10,000 years.

Removing carbon dioxide from the atmosphere would not work fast enough to avoid further warming and acidification of the oceans. In fact, temperatures look set to rise even faster as feedbacks start to kick in more fully, such as albedo changes due to decline of the snow and ice cover in the Arctic and methane releases from the Arctic Ocean seafloor. Furthermore, water vapor will increase by 7% for every 1°C warming. Water vapor is one of the strongest greenhouse gases, so increasing water vapor will further contribute to a non-linear temperature rise.

In conclusion, the world needs to commit to comprehensive and effective action that includes both emission cuts and removal of greenhouse gases from the atmosphere and oceans, as well as further action to deal with the dire situation in the Arctic, as discussed at the Arctic-news Blog.




In December 2015, world delegates will descend on Paris to ensure that global warming will not cross the guardrail of 2°...
Posted by Sam Carana on Thursday, September 10, 2015

Monday 7 September 2015

Arctic Sea Ice Collapse Threatens - Update 8

The image below, from Arctic-roos.org, shows Arctic sea ice extent up to September 6, 2015.
Editorial note: The dramatic drop in sea ice extent shown on the image below turns out to be an error. The website at Arctic-roos.org is being updated and will show the correct extent soon.
The image shows a recent drop in sea ice extent that is so dramatic (red line, i.e. extent for the year 2015) that some think that it must be a glitch in the system. Even so, it should act as a warning about deterioration of the sea ice in the Arctic.

As discussed in earlier posts, the sea ice today is in a terrible condition. Thick sea ice is virtually absent compared to the situation in the year 2012 around this time of year, as illustrated by the image below that compares sea ice thickness on September 5, 2012 (left panel) with September 5, 2015 (right panel).


Furthermore, sea surface temperatures are very high. The North Pacific, on September 3, 2015, was more than 1°C (1.8°F) warmer than it was compared to the period from 1971 to 2000, as illustrated by the Climate Reanalyzer image on the right.

Sea surface temperature are very high around North America, both in the Pacific Ocean and in the Atlantic Ocean. The image below shows sea surface temperatures on September 4, 2015, indicating that a huge amount of ocean heat has accumulated in the Atlantic Ocean off the coast of North America.

The Gulf Stream is pushing much of this warm water toward the Arctic Ocean. Additionally, warm water from the Pacific Ocean is entering the Arctic Ocean through the Bering Strait.


Above image below shows sea surface temperature anomalies in the Arctic as at September 6, 2015. 

As the Arctic warms up faster than the rest of the world, the jet stream becomes ever more destabilized, as illustrated by the image below


The image on the right, from the Naval Research Laboratory, shows sea ice speed and drift as forecast on September 5, 2015, for September 6, 2015. 

The situation looks set to get worse. Warm oceans increase the chance that strong winds will emerge that can have a devastating impact on the remaining sea ice in the Arctic.

As the September 7, 2015, image below right shows, cyclones are lining up in the Pacific Ocean, with their strongest impact yet to hit the Arctic Ocean. 

There still is some time to go before sea ice can be expected to reach its minimum, at around half September 2015, while sea currents will continue to carry warmer water into the Arctic Ocean for months to come.

There is a strengthening El Niño, while more open water increases the chance that storms will develop that will push the last remnants of the sea ice out of the Arctic Ocean, as discussed in earlier posts such as this one. Storms can also mix warm surface waters all the way down to the seafloor, as discussed in this earlier post. Cyclones increase this danger.

These cyclones are headed in the direction of the Arctic. The Climate Reanalyzer forecast for September 14, 2015, below shows strong winds over the Pacific Ocean close to the Arctic Ocean, as well as over the Arctic Ocean and the North Atlantic.


The situation is dire and calls for comprehensive and effective action, as discussed in the Climate Plan.



Sea surface temperature anomalies in the Arctic as at September 6, 2015. From 'Arctic Sea Ice Collapse Threatens -...
Posted by Sam Carana on Monday, September 7, 2015

Tuesday 1 September 2015

Arctic Sea Ice Collapse Threatens - Update 7

The image below shows Arctic sea ice extent, with the blue dot indicating that extent for August 30, 2015, was 4.804 million square kilometers. Satellite records shows that, at this time of the year, extent was only lower in 2007, 2011 and 2012.


There are a number of reasons why sea ice looks set to decrease dramatically over the next few weeks. On above image, extent for 2015 looks set to soon cross the lines for the years 2007 and 2011, while the sea ice today is in an even worse condition than one might conclude when looking at extent alone.

Thick sea ice is virtually absent compared to the situation in the year 2012 around this time of year, as illustrated by the image below that compares sea ice thickness on August 30, 2012 (left) with August 30, 2015 (right).


Furthermore, sea surface temperatures are very high. The North Pacific, on August 31, 2015, was about 1°C (1.8°F) warmer than it was compared to the period from 1971 to 2000, as illustrated by the Climate Reanalyzer image on the right.

As the image below shows, sea surface temperature anomalies are very high around North America, both in the Pacific Ocean and in the Atlantic Ocean.

The image below shows sea surface temperatures on August 30, 2015, indicating that a huge amount of ocean heat has accumulated in the Atlantic Ocean off the coast of North America.


The Gulf Stream is carrying much of this warm water toward the Arctic Ocean. Additionally, warm water from the Pacific Ocean is entering the Arctic Ocean through the Bering Strait.


Above image below shows sea surface temperature anomalies in the Arctic as at August 31, 2015.




There still are a few weeks to go before sea ice can be expected to reach its minimum, at around half September 2015, while sea currents will continue to carry warmer water into the Arctic Ocean for months to come.

There is a strengthening El Niño, while more open water increases the chance that storms will develop that will push the last remnants of the sea ice out of the Arctic Ocean, as discussed in earlier posts such as this one. Storms can also mix warm surface waters all the way down to the seafloor, as discussed in this earlier post. Typhoons increase this danger. The above image show three typhoons in the Pacific Ocean on 30 August, 2015, and the Climate Reanalyzer image on the right shows them on September 1, 2015.

These typhoons are headed in the direction of the Arctic. The Climate Reanalyzer forecast for September 8, 2015, below shows typhoons in the Pacific Ocean close to the Arctic Ocean, as well as strong wind over the Arctic Ocean.


The situation is dire and calls for comprehensive and effective action, as discussed in the Climate Plan.

Thick sea ice is virtually absent compared to the situation in the year 2012 around this time of year....
Posted by Sam Carana on Tuesday, September 1, 2015

Monday 24 August 2015

Arctic Sea Ice Collapse Threatens - Update 6

The image below shows Arctic sea ice extent, with the blue dot indicating that extent for August 22, 2015, was 5.382 million square kilometers. The record shows that, at this time of the year, extent was only lower in 2007, 2011 and 2012.

There are a number of reasons why sea ice could fall dramatically over the next few weeks.

First of all, the situation today is in an even worse condition than one might conclude when looking at sea ice extent alone. The way NSIDC calculates extent is by first dividing the satellite image into a grid and then including each cell in extent that has 15% or more ice. So, if a few small and very thin pieces of ice floating in a cell happen to cover 15% of a cell, it is counted in as "sea ice".

There is quite a difference between the sea ice that was 5 meters thick north of Greenland in 2012 and the ice that is present there now. The image on the right shows the north-east corner of Greenland on the bottom left. There is almost no ice north of this point.

Thick sea ice is virtually absent compared to the situation in the year 2012 around this time of year, as illustrated by the image below that compares sea ice thickness on August 20, 2012 (left) with August 20, 2015 (right), from an earlier post.



Furthermore, sea surface temperatures are very high. The North Pacific, on August 23, 2015, was exactly 1°C (1.8°F) warmer than it was compared to the period from 1971 to 2000 (see Climate Reanalyzer image right).

As the image below shows, sea surface temperature anomalies are very high around North America. On August 23, 2015, sea surface temperature anomalies as high as 6.4°C (11.5°F) were recorded in the Bering Strait.

This is where warm waters from the Pacific Ocean are flowing into the Arctic Ocean.


The image below shows sea surface temperatures on August 22, 2015, indicating that a huge amount of ocean heat has accumulated in the Atlantic Ocean off the coast of North America.


The Gulf Stream is carrying much of this warm water toward the Arctic Ocean. On August 21, 2015, sea surface temperatures near Svalbard were as high as 17°C (62.6°F), a 12°C (21.5°F) anomaly, at the location marked by the green circle on the image below, showing sea surface temperatures in the top panel and sea surface temperature anomalies in the bottom panel.


The image below shows sea surface temperature anomalies in the Arctic as at August 23, 2015.


[ click on image to enlarge ]
There still are a few weeks to go before sea ice can be expected to reach its minimum, at around half September 2015, while sea currents will continue to carry warmer water into the Arctic Ocean for months to come.

More open water increases the chance that storms will develop that will push the last remnants of the sea ice out of the Arctic Ocean, as discussed in earlier posts such as this one, while storms can also mix warm surface waters all the way down to the seafloor, as discussed in this earlier post. The Climate Reanalyzer forecast for August 26, 2015, on the right shows strong winds both in the Bering Strait and the North Atlantic.

Typhoons increase this danger. The Climate Reanalyzer forecast for August 27, 2015, below shows a typhoon in the Pacific Ocean close to the Arctic Ocean.


The situation is dire and calls for comprehensive and effective action, as discussed in the Climate Plan.



On August 21, 2015, sea surface temperatures near Svalbard were as high as 17°C (62.6°F), a 12°C (21.5°F) anomaly, at...
Posted by Sam Carana on Monday, August 24, 2015

Friday 21 August 2015

Ocean Heat Invades Arctic Ocean

[ click on image to enlarge ]
NOAA analysis shows that, on land, it now is about 1°C (1.8°F) warmer than the 20th century average.

July 2015 was the warmest month ever recorded for the globe. The combined average temperature over global land and ocean surfaces for July was the all-time highest monthly temperature in the 1880-2015 record – it was 16.61°C (61.86°F), i.e. 0.81°C (1.46°F) above the 20th century average. 

Sea surfaces were very warm as well, in particular the North Pacific, which on August 22, 2015, was exactly 1°C (1.8°F) warmer than it was compared to the period from 1971 to 2000 (see Climate Reanalyzer image right).

The July globally-averaged sea surface temperature was the highest temperature for any month in the 1880-2015 record. In July 2015, the sea surface on the Northern Hemisphere was 0.87°C (1.57°F) warmer than it was in the 20th century, as illustrated by the NOAA graph below. 



As the image below shows, the July data for sea surface temperature anomalies on the Northern Hemisphere contain a trendline pointing at a rise of 2°C (3.6°F) before the year 2030. In other words, if this trend continues, the sea surface will be 2°C (3.6°F) warmer in less than 15 years time from now.

[ click on image to enlarge ]
Such a temperature rise would be a catastrophe, as there are huge amounts of methane contained in the form of hydrates and free gas in sediments under the Arctic Ocean seafloor. A relatively small temperature rise of part of these sediments could cause a huge abrupt methane eruption, which could in turn trigger further eruptions of methane.

As illustrated by the image below, high methane levels are already showing up over the Arctic.

Methane levels as high as 2565 parts per billion were recorded on August 18, 2015

[ click on image to enlarge ]
Loss of Arctic sea ice could speed up such a development. The image on the right shows that, on August 20, 2015, Arctic sea ice extent was at a record low for the time of the year except for the years 2007, 2011 and 2012.

The situation today is even worse than one might conclude when looking at sea ice extent alone. Thick sea ice is virtually absent compared to the situation in the year 2012 around this time of year, as illustrated by the image below that compares sea ice thickness on August 20, 2012 (left) with August 20, 2015 (right).


The comparison below further illustrates this. The left panel shows how thick sea ice is anchored to the north-east tip of Greenland on July 7, 2015. The right panel shows how, on August 20, 2015, this ice has been fractured and shattered into pieces. All this ice looks set to soon flow down Fram Strait and melt away in ever warmer water.


The image below shows sea surface temperature anomalies on August 21, 2015.


On the image below, the green circle at the top of each globe indicates a location where sea surface temperature was 17°C (62.6°F) on August 21, 2015, an anomaly of 11.9°C (21.4°F). This is where warm water is entering the Arctic Ocean from the Atlantic Ocean. At the same time, warm water is entering the Arctic ocean through the Bering Strait from the Pacific Ocean.

[ click on image to enlarge ]
There still are a few weeks to go before sea ice can be expected to reach its minimum, at around half September 2015, while sea currents will continue to carry warmer water into the Arctic Ocean for months to come. More open water increases the chance that storms will develop that will push the last remnants of the sea ice out of the Arctic Ocean, as discussed in earlier posts such as this one, while storms can also mix warm surface waters all the way down to the seafloor, as discussed in this earlier post.

Typhoons increase this danger. The Climate Reanalyzer image below shows typhoons in the Pacific.


[ click on image to enlarge ]
Typhoons developing in the Pacific Ocean are getting stronger as the oceans warm. One of the typhoons visible on above map, Typhoon Goni, has just claimed ten lives in the Philippines.

Stronger typhoons come with an increased chance that they will bring strong winds and warm air and water into the Arctic.

Typhoon Goni and the larger Typhoon Atsani are both moving north and look set to move into the direction of the Arctic Ocean, as illustrated by the forecast for the situation on August 26, 2015, on the right.

Atsani was the twelfth typhoon and sixth super typhoon of the year in the western North Pacific—numbers that meteorologists say put the season on a record-breaking track. The NASA image below gives an idea of the size of Typhoon Atsani.

[ Typhoon Atsani - NASA image ]
The situation is dire and calls for comprehensive and effective action, as discussed in the Climate Plan.


July data for sea surface temperature anomalies on the Northern Hemisphere contain a trendline pointing at a rise of 2°C...
Posted by Sam Carana on Friday, August 21, 2015