Showing posts with label warming. Show all posts
Showing posts with label warming. Show all posts

Friday 26 December 2014

Year 2014 Pictures Dire Situation

The year 2014 is shaping up to be the warmest year on record and the heat is felt most strongly in the polar regions and in the oceans. 

Surface Temperatures






Above images show that the Arctic is experiencing accelerating warming. This is causing jet stream changes, resulting in more extreme weather events. Besides creating havoc around the globe, such extreme weather events can further speed up warming of the Arctic Ocean and subsequent release of methane from its seafloor, as described in more detail in a recent post

Ocean Heat

The primary driver of methane release from the Arctic Ocean seafloor is ocean heat. NOAA analysis shows that the global ocean surface temperature for the year-to-date (January through to November 2014) was 1.03°F (0.57°C) above average, the warmest such period on record. The anomaly is even more pronounced in the Norther Hemisphere, as illustrated by the image below.


Ocean temperatures can show much higher anomalies locally, as illustrated by the image below. The high sea surface temperatures near Svalbard give an indication of how warm the ocean current is below the surface.

2014 SST anomaly near Svalbard (green circle) Aug 26: 7.3°C, Sep 26: 6.7°C, Oct 26: 5.9°C, Nov 26: 4.2°C, Dec 26: 3.7°C
The danger is that ocean temperatures will continue to rise, especially in the North Atlantic, and that the Gulf Stream will keep carrying ever warmer water from the North Atlantic into the Arctic Ocean, where it will destabilize methane hydrates contained in sediments under the seafloor.

Methane

Methane levels are already exceptionally high over the Arctic, as illustrated by the recent NOAA image below. Since end October 2014, huge quantities of methane have erupted from the seafloor of the Arctic Ocean. As said, the primary driver of methane release from the Arctic Ocean seafloor is ocean heat. Water temperatures off the coast of North America get very high in July and it takes a few months for ocean currents to carry this heat to the Arctic Ocean. Further reasons why methane levels over the Arctic suddenly get very high from the end of October are discussed in this post.

The Gulf Stream will keep carrying water into the Arctic Ocean that is warmer than the water already there. These methane eruptions will therefore continue into the new year, threatening to further accelerate warming in the Arctic and cause even more extreme weather events, wildfires and further emissions in the year 2015, in a spiral of runaway warming. 



The combination image below shows the strength at which methane is erupting from the Arctic Ocean seafloor. On December 25, 2014, methane lights up the northern sky like a Christmas tree. The image shows levels at 6 km (19,820 ft) altitude, as recorded by, from top to bottom, MetOp-1 am (up to 2277 ppb), MetOp-1 pm (up to 2295 ppb) and MetOp-2 am (up to 2336 ppb).


MetOp-2 records for December 25, 2014, pm, are incorporated in the animation below, showing methane concentrations reaching levels of up to 2284 ppb at an altitude of 6 km (19,820 ft) and reaching even higher levels of up to 2329 ppb at an altitude of 9.3 km (30,570 ft).


The troposphere is deepest at tropical latitudes, where it reaches altitudes of up to 20 km (12 mi), and rather shallow at the polar regions, where it only reaches altitudes of some 7 km (4.3 mi) in winter. For high concentrations of methane to show up over the Arctic Ocean at such a high altitude is a further indication of the strength of these methane eruptions.

Furthermore, the methane that shows up in the atmosphere is only a fraction of the methane that is erupting from the seafloor, as part of the methane will be broken down by microbes as it rises up through the water and gets stuck under the sea ice.

Arctic Sea Ice 


Sea ice only 1m thin at North Pole.
Click on image to enlarge.
The above Naval Research Laboratory animation shows that, while sea ice is now covering the entire Arctic ocean, it is in many places only about one meter thin or less. The December 20, 2014, image on the right shows 1m thin sea ice at the North Pole.

Meanwhile, huge chuncks of thick sea ice are moving along the edges of Greenland and Ellesmere Island into the Atlantic ocean.

An exponential trendline based on sea ice volume observations shows that sea ice looks set to disappear in 2019, while disappearance in 2015 is within the margins of a 5% confidence interval, reflecting natural variability.

In other words, extreme weather events could cause Arctic sea ice to collapse as early as 2015, with the resulting albedo changes further contributing to the acceleration of warming in the Arctic and causing further methane eruptions from the seafloor of the Arctic Ocean.

Demise of the sea ice and snow cover in the Arctic results in further acceleration of warming, not only due to less sunlight getting reflected back into space, but also due to loss of the buffer that currently absorbs huge amounts of heat as it melts in summer. With the demise of this latent heat buffer, more sunlight will instead go into heating up the water of the Arctic Ocean. For more on the latter, see the page on latent heat

Feedbacks


Above image illustrates some of the self-reinforcing feedback loops that have been highlighted in this post. Further feedbacks are pictured in the image below.

from the Feedbacks page


Situation Calls For Comprehensive And Effective Action

The situation is dire and calls for comprehensive and effective action, as discussed at the Climate Plan blog.





Saturday 11 October 2014

Climate Change Accelerating

Methane levels as high as 2562 ppb were recorded on October 9, 2014, as illustrated by the image below.

Many grey areas show up in the image where QC (quality control) failed, as it was too hard to read methane levels in the respective area, apparently due to high moisture levels (i.e. snow, rain or water vapor) in the atmosphere.


As above image illustrates, cloud cover is high over the Arctic, while there is also precipatation in the form of snowfall.

In other words, high levels of methane (above 1950 ppb, colored yellow) could be present over a much larger part of the Arctic Ocean, while methane in these grey areas could be even higher than the measured peak level of 2456 ppb.

This appears to be confirmed by persistent high methane levels over vast areas across the Arctic Ocean both in the morning (top part of the image further above) and in the afternoon (bottom part of image) on 9 October 2014.

Methane levels are this high over the Arctic Ocean for the number of reasons, including:
  • The Gulf Stream keeps pushing warm water into the Arctic Ocean.
  • The resulting eruptions of methane from the seafloor of the Arctic Ocean constitute a feedback that accelerates warming in the Arctic. 
  • As the Arctic warms up more rapidly than the rest of Earth, the Arctic's ice and snow cover will decline, further accelerating warming in the Arctic.
  • As the Arctic warms up more rapidly than the rest of Earth, the speed at which jet streams circumnavigates the Northern Hemisphere will weaken, making it meander more, resulting in a greater frequency and intensity of extreme weather events, such as heat waves, droughts and wildfires. 
Here's an example of intense warming. Look at what is currently happening on Greenland.

As the image above right shows, sea surface temperature anomalies as high as +1.89°C hit the North Atlantic (on October 8, 2014). 

Furthermore, high cloud cover over the Arctic (image further above) makes it hard for the heat there to radiate out into space, further contributing to high temperature anomalies.

The image on the right shows high temperature anomalies over Greenland and parts of the Arctic Ocean on October 11, 2014. Note that anomalies are averaged out over the course of the day (and night).

The image below (right) shows anomalies at the top end of the scale hitting large parts of Greenland at a specific time during this day. The left part of the image below shows how this could happen, i.e. jet streams curling around Greenland trapping warm air inflow from the North Atlantic.


As said, as the Arctic warms up more rapidly than the rest of Earth, the speed at which jet streams circumnavigate the Northern Hemisphere will weaken, making the jets meander more and creating patterns that can trap heat (or cold) for a number of days over a given area. Due to the height of its mountains, Greenland is particularly prone to be increasingly hit by heatwaves resulting from such blocking patterns. Warming changes the texture of snow and ice, making it more slushy and darker, which also makes that it absorbs more of the sunlight's heat, further accelerating melting.

As Paul Beckwith warns in an earlier post, melt rates on Greenland have doubled in the last 4 to 5 years, and melt rates on the Antarctica Peninsula have increased even faster. Based on the last several decades, melt rates have had a doubling period of around 7 years or so. If this trend continues, we can expect a sea level rise approaching 7 meters by 2070.

From: More than 2.5 m sea level rise by 2040
These are all indications that the pace of climate change is accelerating in many ways, the most dangerous one being ever larger methane eruptions from the Arctic Ocean's seafloor. As the image below shows, sea surface temperature anomalies are very high in the Arctic Ocean, indicating very high temperatures under the surface.



U.S. Secretary of State John Kerry recently said: “There are now – right now – serious food shortages taking place in places like Central America because regions are battling the worst droughts in decades, not 100-year events in terms of floods, in terms of fires, in terms of droughts – 500-year events, something unheard of in our measurement of weather.” Warning about looming catastrophe, Kerry adds: “Life as you know it on Earth ends. Seven degrees increase Fahrenheit (3.9°C), and we can't sustain crops, water, life under those circumstances.”

The situation is dire and calls for comprehensive and effective action, as discussed at the Climate Plan blog.




Friday 4 July 2014

Climate Plan

This image sums up the lines of action, to be implemented in parallel and as soon as possible, and targets of the Climate Plan, in order to avoid climate catastrophe.

The Climate Plan and its various parts have been discussed in many post at Arctic-news blog over the years.

Now is the time to support the Climate Plan and to make sure that it will be considered at many forums, such as the Climate Summit, to be held September 23, 2014, at the U.N. Headquarters in New York, and preparations for the UNFCCC Climate Change Conference in Paris in 2015.

Please show your support by sharing this text and the image widely!


Emission cuts

In nations with both federal and state governments such as the U.S., the President (or Head of State or Cabinet, basically where executive powers are held) can direct:
  • federal departments and agencies to reduce their emissions for each type of pollutant annually by a set percentage, say, CO2 and CH4 by 10%, and HFCs, N2O and soot by higher percentages.
  • the federal Environmental Protection Agency (EPA) to make states each achieve those same reductions. 
  • Target: 80% cut everywhere for each type of pollutant
    by 2020 (to be managed locally provided targets are met)
  • the EPA to monitor progress by states and to step in with more effective action in case a state looks set to miss one or more targets.
    (More effective action in such a case would be to impose (federal) fees on applicable polluting products sold in the respective state, with revenues used for federal benefits. Such federal benefits could include building interstate High-Speed Rail tracks, adaptation and conservation measures, management of national parks, R&D into batteries, ways to vegetate deserts and other land use measurements, all at the discretion of the EPA. Fees can be roughly calculated as the average of fees that other states impose in successful efforts to meet their targets.)
Similar policies could be adopted elsewhere in the world, and each nation could similarly delegate responsibilities to states, provinces and further down to local communities.

Carbon dioxide removal and storage
Target: restore atmosphere and ocean to long term average
by 2100 (with each nation's annual contributions to reflect
its past emissions)

Energy feebates can best clean up energy, while other feebates (such as pictured in the above diagram) can best raise revenue for carbon dioxide removal. Energy feebates can phase themselves out, completing the necessary shift to clean energy within a decade. Carbon dioxide removal will need to continue for much longer, so funding will need to be raised from other sources, such as sales of livestock products, nitrogen fertilizers and Portland cement.

A range of methods to remove carbon dioxide would be eligible for funding under such feebates. To be eligible for rebates, methods merely need to be safe and remove carbon dioxide.

There are methods to remove carbon dioxide from the atmosphere and/or from the oceans. Rebates favor methods that also have commercial viability. In case of enhanced weathering, this will favor production of building materials, road pavement, etc. Such methods could include water desalination and pumping of water into deserts, in efforts to achieve more vegetation growth. Selling a forest where once was a desert could similarly attract rebates.

Some methods will be immediately viable, such as afforestation and biochar. It may take some time for methods such as enhanced weathering to become economically viable, but when they do, they can take over where afforestation has exhausted its potential to get carbon dioxide back to 280ppm.

Additionally, conservation and land use measures could help increase carbon storage in ecosystems.

Solar radiation management

Target: prevent Arctic Ocean from warming by more
than 1°C above long term average (U.N. supervised)
Apart from action to move to a more sustainable economy, additional lines of action are necessary to reduce the danger of runaway global warming.

Extra fees on international commercial aviation could provide funding for ways to avoid that the temperature of the atmosphere or the oceans will rise by more than 1°C above long term average.

Due to their potential impact across borders, these additional lines of action will need ongoing research, international agreement and cooperation.

Land, clouds, wind, water, snow and ice management

Target: increase Arctic snow and ice cover (U.N.
supervised) and restore it to its long term average 
Apart from action to move to a more sustainable economy, additional lines of action are necessary to reduce the danger of runaway global warming.

Extra fees on international commercial aviation could also provide funding for ways to cool the Arctic and restore the snow and ice cover to its long term average extent.

As said, due to their potential impact across borders, these additional lines of action will need ongoing research, international agreement and cooperation.

Methane management and further action

Target: relocate vulnerable Arctic clathrates (U.N. supervised)
and restore mean atmospheric CH4 level to long term average
by 2100 (with each nation's annual contributions to reflect its
past emissions.
Further action is needed to avoid that huge quantities of methane will abruptly erupt from the seafloor of the Arctic Ocean.

Vulnerable hydrates should be considered to be relocated under U.N. supervision.

Besides this, local action can be taken to reduce methane levels in the atmosphere with each nation's annual contributions to reflect its past emissions.

Adaptation, conservation and land use measures could further improve the situation.

The comprehensive and effective action of the Climate Plan will reduce the threat of runaway warming, and this will have obvious benefits for the environment and for species threatened with extiction.

Besides this, this will also save people money, will improve people's health and safety, will increase security of food and fresh water supply, will make energy supply and the electric grid more efficient, safe, robust and reliable, will reduce perceived needs for military forces to police fuel supply lines globally, and will create numerous local job and investment opportunities.


Please support, follow and discuss the Climate Plan at facebook.com/ClimatePlan and at ClimatePlan.blogspot.com



Monday 16 June 2014

Warming of the Arctic Fueling Extreme Weather

Extreme weather

Heavy rains and floods hit Serbia and Bosnia in May 2014, as discussed in an earlier post.

Later in May, further flooding hit central Europe. From May 30 to June 1, 2014, parts of Austria received the amount of rain that normally falls in two-and-half months: 150 to 200 mm (5.9 to 7.9"), with some parts experiencing 250 mm (9.8").

What is fueling this extreme weather? Have a look at the image below.



The image shows a number of feedbacks that are accelerating warming in the Arctic. Feedback #14 refers to (latent) heat that previously went into melting. With the demise of the snow and ice cover, an increasing proportion of this heat gets absorbed and contributes to accelerated warming in the Arctic.

As the sea ice heats up, 2.06 J/g of heat goes into every degree Celsius that the temperature of the ice rises. While the ice is melting, all energy (at 334J/g) goes into changing ice into water and the temperature remains at 0°C (273.15K, 32°F). 

Once all ice has turned into water, all subsequent heat goes into heating up the water, at 4.18 J/g for every degree Celsius that the temperature of water rises.

The amount of energy absorbed by melting ice is as much as it takes to heat an equivalent mass of water from zero to 80°C. The energy required to melt a volume of ice can raise the temperature of the same volume of rock by 150ยบ C.

Currently, the energy equivalent of 1.5 million Hiroshima bombs goes into melting of the Arctic sea ice each year, according to calculations by Sam Carana.

As the ice disappears, this energy will instead be absorbed elsewhere and cause temperatures in the Arctic to rise further, indicated as feedback #14.

This comes on top of the albedo feedback #1 that can on its own more than double the net radiative forcing resulting from the emissions caused by all people of the world, according to calculations by Prof. Peter Wadhams.

Further feedbacks include changes to the polar vortex and jet stream that are in turn causing more extreme weather, as also described in the earlier post Feedbacks in the Arctic.


Global Warming

Higher levels of greenhouse gases are trapping more heat in the atmosphere, resulting in more intense heatwaves in some places, while stronger winds and greater evaporation of water from the sea lead to stronger rainfall in other places. Global warming thus contributes to more extreme weather around the globe.

The Arctic is hit not only by the warming resulting from greenhouse gas emissions, but also by emissions of soot, dust and other compounds that settle on the snow and ice cover and speed up its demise.

As illustrated by the image below, by Nuccitelli et al., most heat goes into the oceans. A substantial amount of heat also goes into the melting of ice.

A lot of ocean heat is transported by the Gulf Stream into the Arctic Ocean. The North Atlantic is hit particularly strongly by pollution from North America, as illustrated by the image below.

[ screenshot from Perdue University's Vulcan animation ]
Heat carried by the Gulf Stream into the Arctic Ocean contributes to high sea surface anomalies in the Arctic, as illustrated by the image below. Arctic sea ice is under threat from heat from the North Atlantic, while heat from the Pacific Ocean that was in part caused by pollution from east-Asia is now threatening to enter the Arctic Ocean through the Bering Strait, as illustrated by the image below that shows areas with sea surface temperature anomalies well over 8 degrees Celsius. 

[ click on image to enlarge ]
Warmer water in the Arctic Ocean in turn causes methane to be released from the seafloor of the Arctic Ocean, as discussed further below. 


Accelerated Warming in the Arctic

As said, warming hits the Arctic particularly strongly due to feedbacks such as albedo changes caused by the demise of the snow and ice cover in the Arctic. Another feedback is a changing jet stream. The jet stream used to circumnavigate the globe at high speed, separating climate systems that used to be vastly different above and below the jet stream. Accelerated warming in the Arctic is decreasing the temperature difference between the Arctic and the Equator, in turn causing the jet stream to slow down and become wavier. As a result, air can more easily move north to south and visa versa, especially when the jet stream's waves expand vertically and take a long time to move from west to east (i.e. a blocking pattern).

These changes to the jet stream are fueling extreme weather events. In the May/June event, a large loop had developed in the jet stream over Europe and got stuck in place, making a strong southerly wind carry moisture-laden air from the Mediterranean Sea over Central Europe, clashing with colder air flowing down from the north as the jet stream was stuck in such a blocking pattern.

Record May heat hit northern Finland and surrounding regions of Russia and Sweden. Earlier in May (on May 19) an all-time national heat record was set of 91.4°F (33.0°C) in St. Petersburg, Russia, slashing the previous record by a wide margin. This temperature was unprecedented in records in St. Petersburg that started in 1881 and show a previous May record set in 1958 of 87.6°F (30.9°C).

The compilation below shows the jet stream on three days (May 24, 25 and 27), on top of surface temperature anomalies for those days.

[ click on image to enlarge ]

Further illustrating the event is the animation below, showing the jet stream from May 26 to June 11, 2014. Note that this is a 14.5 MB file that may take some time to fully load.

[ click on image to enlarge ]
Methane

Huge methane emissions took place from the seafloor of the Arctic Ocean from September 2013 to March 2014. These emissions have meanwhile risen up higher in the atmosphere and have moved closer to the equator.


Compared to June 2013, mean methane levels at higher altitudes are now well over 10 ppb higher at higher altitudes while there has been only little change closer to the ground. Since these mean levels are global means, the difference is even more pronounced at specific locations on the Northern hemisphere, where clouds of methane originating from the Arctic are contributing to the occurence of heat waves.

The contribution of methane to such heatwaves depends on the density of the methane at the time in the atmosphere over the location during such events.

Highest global mean methane levels varied from 1907 ppb to 1812 ppb for the period June 6 to 15, 2014, as illustrated by the image on the right, and peak methane concentration varied a lot from day to day. On June 6, 2014, peak readings as high as 2516 ppb were recorded.

Indicative for what can be the result is the temperature anomaly on May 19, when temperatures went up as high as 91.4°F (33.0°C) in St. Petersburg, Russia, slashing the previous record by a wide margin, of more than 2°C, as described above


Conclusion

The situation is the Arctic is threatening to escalate into runaway warming and urgently requires comprehensive and effective action as discussed at the Climate Plan blog.


References

- May 2014 Global Weather Extremes Summary

- Extreme Jet Stream Pattern Triggers Historic European Floods
http://www.wunderground.com/blog/JeffMasters/extreme-jet-stream-pattern-triggers-historic-european-floods


Related posts

- The Biggest Story of 2013
http://arctic-news.blogspot.com/2013/12/the-biggest-story-of-2013.html

- Climate Plan
http://climateplan.blogspot.com
- More extreme weather can be expected
http://arctic-news.blogspot.com/2014/05/more-extreme-weather-can-be-expected.html

- Extreme weather strikes around the globe - update
http://arctic-news.blogspot.com/2014/02/extreme-weather-strikes-around-the-globe-update.html

- Escalating extreme weather events to hammer humanity (by Paul Beckwith)
http://arctic-news.blogspot.com/2014/04/escalating-extreme-weather-events-to-hammer-humanity.html

- Our New Climate and Weather (by Paul Beckwith)
http://arctic-news.blogspot.com/2014/01/our-new-climate-and-weather.html

- Our New Climate and Weather - part 2 (by Paul Beckwith)
http://arctic-news.blogspot.com/2014/01/our-new-climate-and-weather-part-2.html

- Changes to Polar Vortex affect mile-deep ocean circulation patterns
http://arctic-news.blogspot.com/2012/09/changes-to-polar-vortex-affect-mile-deep-ocean-circulation-patterns.html

- Polar jet stream appears hugely deformed
http://arctic-news.blogspot.com/2012/12/polar-jet-stream-appears-hugely-deformed.html




Friday 16 May 2014

More extreme weather can be expected



The heaviest rains and floods in 120 years have hit Serbia and Bosnia this week, Reuters and Deutsche Welle report.

The animation below shows the Jet Stream's impact on the weather. Cold temperatures have descended from the Arctic to Serbia and Bosnia in Europe and all the way down to the Gulf of Mexico in North America, while Alaska, California, and America's East Coast are hit by warm temperatures. In California, 'unprecedented' wildfires and fierce winds lead to 'firenadoes', reports CNN.



The image below shows that on May 15, 2014, the wind approaching Serbia and Bosnia at 700 hPa reached speeds of up to 120 km per hour (75 mph), as indicated by the green circle on the main image and inset.


The image below, from skeptical science, shows the cyclonic spin that can be expected in a through such as the one that hit Serbia and Bosnia recently.


As the Jet Stream changes, more extreme weather events can be expected. What makes the Jet Stream change? As the Arctic is warming up faster than the rest of the world, the temperature difference between the Arctic and the equator decreases, in turn decreasing the speed at which the Jet Stream circumnavigates the globe. This can cause 'blocking patterns', with extreme weather events hitting an area longer than before.

As the jet stream becomes wavier, cold air can more easily descend from the Arctic down to lower latitudes in a downward through of the Jet Stream, while warm air can more easily reach higher latitudes in an upward ridge of the Jet Stream.

This spells bad news for many areas across the world that can be expected to be hit by more extreme weather events such as heatwaves, wildfires fuelled by stronger winds and more intense drought, storms and floods.

Heatwaves are a huge threat in the Arctic, especially when followed by storms that can cause warm surface water to mix down to the bottom of the sea and warm up sediments under the seafloor that can contain huge amounts of methane in the form of hydrates and free gas. The situation is dire and calls for comprehensive and effective action, as discussed at the Climate Plan blog.


Related

- Extreme weather strikes around the globe - update
http://arctic-news.blogspot.com/2014/02/extreme-weather-strikes-around-the-globe-update.html

- Escalating extreme weather events to hammer humanity (by Paul Beckwith)
http://arctic-news.blogspot.com/2014/04/escalating-extreme-weather-events-to-hammer-humanity.html

- Our New Climate and Weather (by Paul Beckwith)
http://arctic-news.blogspot.com/2014/01/our-new-climate-and-weather.html

- Our New Climate and Weather - part 2 (by Paul Beckwith)
http://arctic-news.blogspot.com/2014/01/our-new-climate-and-weather-part-2.html

- Changes to Polar Vortex affect mile-deep ocean circulation patterns
http://arctic-news.blogspot.com/2012/09/changes-to-polar-vortex-affect-mile-deep-ocean-circulation-patterns.html

- Polar jet stream appears hugely deformed
http://arctic-news.blogspot.com/2012/12/polar-jet-stream-appears-hugely-deformed.html



Wednesday 16 April 2014

Near-Term Human Extinction

Global Warming and Feedbacks

Is there a mechanism that could make humanity go extinct in the not-too-distant future, i.e. within a handful of decades?

Most people will be aware that emissions due to human activity are causing global warming, as illustrated by the arrow marked 1 in the image on the left. Global warming can cause changes to the land, to vegetation and to the weather. This can result in wildfires that can in turn cause emissions, thus closing the loop and forming a self-reinforcing cycle that progressively makes things worse.

Furthermore, less forests and soil carbon also constitute a decrease in carbon sinks, resulting in carbon that would otherwise have been absorbed by such sinks to instead remain in the atmosphere, thus causing more global warming, as illustrated by the additional downward arrow in the image on the right. In conclusion, there are a number of processes at work that can all reinforce the impact of global warming.

Emissions can also contribute more directly to land degradation, to changes in vegetation and to more extreme weather, as indicated by the additional arrow pointing upward in the image on the right. A recent study by Yuan Wang et al. found that aerosols formed by human activities from fast-growing Asian economies can cause more extreme weather, making storms along the Pacific storm track deeper, stronger, and more intense, while increasing precipitation and poleward heat transport.

Accelerated Warming in the Arctic

Similar developments appear to be taking place over the North Atlantic. Huge pollution clouds from North America are moving over the North Atlantic as the Earth spins. In addition, the Gulf Stream carries ever warmer water into the Arctic Ocean. As the image below shows, sea surface temperature anomalies at the highest end of the scale (8 degrees Celsius) are visible off the coast of North America, streching out all the way into the Arctic Ocean.


As said, feedbacks as are making the situation progressively worse. Feedback loops are causing warming in the Arctic to accelerate. Warming in the Arctic is accelerating with the demise of the snow and ice cover in the Arctic, and this is only feedback #1 out out many feedbacks that are hitting the Arctic, as described in an earlier post. As the temperature difference between the equator and the Arctic decreases, the Jet Stream is changing, making it easier for cold air to move out of the Arctic and for warm air from lower latitudes to move in (feedback #10).


Abrupt Climate Change leading to Extinction at Massive Scale

The danger is that, as temperatures over the Arctic Ocean warm up further and as the Gulf Stream carries ever warmer water into the Arctic Ocean, large quantitities of methane will erupt abruptly from the seafloor of the Arctic Ocean, adding a third kind of warming, runaway warming resulting in abrupt climate change, and leading to mass death, destruction and extiction of species including humans.

Persistence of such a progression makes it inevitable that the rest of Earth will follow the huge temperature rises in the Arctic. Massive wildfires will first ignite across higher latitudes, adding further greenhouse gas emissions and causing large deposits of soot on the remaining snow and ice on Earth, with a huge veil of methane eventually spreading around the globe. The poster below, from an earlier post, illustrates the danger.

[ click on image to enlarge - note that this is a 1.8 MB file that may take some time to fully load ]
Views by Contributors

How likely is it that the above mechanism will cause human extinction within the next few decades? What views do the various contributors to the Arctic-news blog have on this?

Guy McPherson has long argued that, given the strengths of the combined feedbacks and given the lack of political will to take action, near-term human extinction is virtually inevitable.

In the video below, Paul Beckwith responds to the question: Can climate change cause human extinction?


Further contributors are invited to have their views added to this post as well. While many contributors may largely share Paul Beckwith's comments, it's important to highlight that contributors each have their own views, and this extends to their preference for a specific plan of action.

Geo-engineering

One of the more controversial issues is the use of geo-engineering. Guy McPherson doesn't believe geo-engineering will be successful. In the video below, Paul Beckwith gives his (more positive) views on this.


I must admit that the lack of political will to act is rather depressing, especially given the huge challenges ahead. So, I can understand that this can make some of us pessimistic at times. Nonetheless, I am an optimist at heart and I am convinced that we can get it right by giving more support to a Climate Plan that is both comprehensive and effective, as discussed at ClimatePlan.blogspot.com